✨Kính thiên văn Chân trời sự kiện

Kính thiên văn Chân trời sự kiện

350x350px|thumb|Logo chính thức của Kính thiên văn Chân trời sự kiện

Kính thiên văn Chân trời sự kiện (tiếng Anh: Event Horizon Telescope, EHT) là một dự án và là chương trình quan sát thiên văn tập trung vào các lỗ đen siêu khối lượng nằm ở trung tâm các thiên hà. Chương trình sử dụng kỹ thuật giao thoa với đường cơ sở rất dài (Very Long Baseline Interferometry, VLBI) bằng cách kết hợp các kính viễn vọng vô tuyến trên toàn thế giới trong đó nhiều ăng-ten độc lập cách xa hàng chục nghìn kilômét được điều phối, cùng quan sát và ghi lại dữ liệu trong cùng một thời điểm, tạo thành một mạng lưới kính thiên văn khổng lồ có đường kính tương đương đường kính Trái Đất. Kính thiên văn ảo này làm tăng độ phân giải góc đến mức đủ quan sát cấu trúc lớn của vùng bao quanh chân trời sự kiện. Dự án EHT hy vọng thực hiện kiểm chứng thuyết tương đối tổng quát của Einstein khi sẽ phát hiện ra những sai lệch dưới ảnh hưởng trường hấp dẫn mạnh của một lỗ đen, nghiên cứu đĩa bồi tụ và các tia phát ra từ lỗ đen, thảo luận về sự tồn tại của chân trời sự kiện, và phát triển cơ sở vật lý lỗ đen.

Đối tượng quan sát của EHT chủ yếu là Sagittarius A nằm ở thiên cầu nam tại trung tâm của Ngân Hà, và lỗ đen nằm ở thiên cầu bắc tại trung tâm của thiên hà elip M87. Trong hai hố đen này, Sagittarius A bị chắn bởi làn bụi dày của đĩa Ngân Hà trên bầu trời, trong khi lỗ đen của M87 phát ra luồng tia tương đối tính có độ dài 5.000 năm ánh sáng. Để có thể nhìn xuyên qua làn bụi của thiên hà và đĩa vật chất bao quanh lỗ đen, EHT được thiết lập để quan sát ở bước sóng 1.33 mm và dự định giảm xuống 0.87 mm để thu được các chi tiết trong tương lai. Vì lượng dữ liệu thu được từ các kính thiên văn vô tuyến rất lớn để có thể truyền tải qua hệ thống internet, dữ liệu ở mỗi trạm quan sát sẽ được ghi vào các ổ đĩa cứng và gửi về hai trung tâm xử lý dữ liệu bằng siêu máy tính thuộc Đài quan sát Haystack ở bang Massachusetts, Hoa Kỳ và Viện Thiên văn vô tuyến Max Planck ở Bonn, Đức. Tại đây dữ liệu được tổng hợp và phân tích để cho ra bức ảnh ở chế độ quan sát với bước sóng và mạng lưới kính vô tuyến tương ứng. Theo kết quả mô phỏng máy tính trước đây, ánh sáng (và/hoặc bức xạ điện từ) phát ra bởi vật chất bao quanh lỗ đen sẽ bị bẻ cong do hiệu ứng thấu kính hấp dẫn gây bởi khối lượng khổng lồ của lỗ đen, tạo thành một vầng hào quang xung quanh lỗ đen. Bóng tối (silhouette, shadow) hình tròn ở trung tâm của hào quang là hình ảnh bao ngoài của lỗ đen mà một quan sát viên ở xa có thể thấy được. Chân trời sự kiện nằm ẩn trong vùng bóng tối này.

Tại biên giới này cũng nổi lên những đặc điểm mâu thuẫn giữa cơ học lượng tử và thuyết tương đối rộng. Tính chất nghịch đảo thời gian (time reversibility) là một đặc điểm cơ bản của cơ học lượng tử miêu tả các hệ vật lý; mỗi quá trình lượng tử có một quá trình nghịch với nó, mà về mặt nguyên lý có thể sử dụng để khôi phục bất kỳ thông tin nào ở thời điểm gốc ban đầu. Ngược lại, thuyết tương đối tổng quát—lý thuyết giải thích hấp dẫn là biểu hiện của độ cong không thời gian và dự đoán sự tồn tại của lỗ đen—cho rằng không tồn tại quá trình nghịch khi có thể đưa thứ gì đó trước đấy rơi vào lỗ đen quay ra trở lại bên ngoài chân trời sự kiện. Có nghĩa rằng thông tin mang bởi các hạt rơi vào trong lỗ đen sẽ bị mất mãi mãi. Mâu thuẫn trên chính là nghịch lý thông tin lỗ đen. hàng trăm nghìn hoặc vài triệu parsec. Các tia tương đối tính xuất phát từ phạm vi gần lỗ đen như là những chùm tia có độ chuẩn trực cao mà có thể xâu qua hệ Mặt Trời—ví như xâu chỉ qua lỗ kim thiên hà. Các nhà thiên văn vật lý không biết cơ chế nào có thể gia tốc những tia này lên tới vận tốc lớn như vậy hay thậm chí thành phần của những tia này bằng gì—có phải chúng chứa electron và proton hay electron và positron, hay về cơ bản chúng chỉ là điện từ trường mạnh? Để trả lời những câu hỏi trên và những câu hỏi liên quan, các nhà thiên văn cần quan sát trực tiếp khí và bụi trong môi trường quanh lỗ đen.

Kích thước của vùng bóng tối được xác định hoàn toàn bởi thuyết tương đối tổng quát. Nó nằm tại biên giới của mặt cầu quỹ đạo photon, nhưng được phóng đại lớn hơn bởi vì hiệu ứng thấu kính hấp dẫn. Đối với một lỗ đen không quay, bán kính của quỹ đạo photon bằng Rphoton = 1,5 RS và kích thước của vùng bóng tối là R_{shadow} = \frac{\sqrt{27{2} R_S. Đối với một lỗ đen quay, quỹ đạo photon nằm sâu hơn trong trường hấp dẫn của lỗ đen (hay bán kính nhỏ hơn). Tuy nhiên, các photon lại chịu mức độ phóng đại lớn hơn so với ở lỗ đen không quay. Kết quả là, kích thước của vùng bóng tối lỗ đen có giá trị độc lập với sự tự quay và hướng quan sát lỗ đen trong vòng 4%.

Mô phỏng hình ảnh đĩa bồi tụ bao quanh lỗ đen ở trung tâm thiên hà M87. Vùng bóng tối xác định bởi biên giới của quỹ đạo photon được phóng đại nhờ hiệu ứng thấu kính hấp dẫn, biên giới chân trời sự kiện nằm ẩn dưới vùng bóng tối này.

Quá trình xây dựng

Các hội nghị chuẩn bị

Đầu năm 2012, các nhà thiên văn từ khắp nơi trên thế giới lần đầu tiên đã tổ chức một hội nghị về EHT tại Tucson, Arizona, và quyết định thành lập thành một đội để lập kế hoạch liên lạc với các đài quan sát vô tuyến trên toàn cầu để quan sát chân trời sự kiện của hố đen và họ đã đặt tên dự án là Kính thiên văn Chân trời sự kiện. Phần lớn đại diện của các đài quan sát liên quan đã có mặt tại hội nghị này, nhưng chi tiết về nhân sự và nguồn lực tài chính vẫn chưa được xác định cụ thể. Tại thời điểm này, ba kính thiên văn ở California, Arizona, và Hawaii đã được kết nối với nhau thành cặp và thực hiện quan sát các thiên thể trong vài năm ở bước sóng 1,3 mm. Những hình ảnh mờ nhạt về vùng trung tâm của Ngân Hà đã được chụp để nghiên cứu các tính chất của lỗ đen. Các nhà thiên văn hi vọng giảm bước sóng quan sát xuống 0,83 mm và có thêm nhiều kính thiên văn được kết nối để mở rộng đường cơ sở và cải thiện công suất phân giải góc. Ở thời điểm đó, khoảng một chục kính thiên văn đã có khả năng quan sát ở bước sóng tương tự hoặc có thể chỉnh sửa để quan sát ở bước sóng này một cách dễ dàng. Ước tính cần vài triệu đô la Mỹ để thực hiện nâng cấp và điều chỉnh thiết bị đo ở một số kính thiên văn vô tuyến. Hệ thống 66 ăng ten của ALMA được coi là một trong những đài quan sát quan trọng đối với dự án, và với sự tham gia của ALMA sẽ giúp tăng đáng kể độ dài của đường cơ sở. Các nhà nghiên cứu EHT ở đài quan sát Haystack nhận được tài trợ 4 triệu US$ từ Quỹ Khoa học Quốc gia (National Science Foundation) để giúp ALMA trang bị các thiết bị phù hợp với VLBI và đài quan sát này đã bắt đầu tham gia vào dự án từ năm 2015. Sau đó dự án dần dần mở rộng thêm các kính thiên văn khác, ví dụ như kính thiên văn Nam Cực (SPT) được nâng cấp hoặc kính thiên văn Greenland được xây mới. Tại hội nghị năm 2012 đội EHT đã soạn thảo biên bản ghi nhớ (MOU) được các bên ký kết vào mùa hè 2012, nhưng các thử nghiệm và công việc trước đó vẫn được thực hiện dưới các điều khoản sắp xếp mang tính hình thức.

Các hoạt động trước đó

phải|ALMA nằm ở sa mạc Atacama, Chile.

Các hoạt động trước bao gồm quá trình phát triển và triển khai các thiết bị thu tín hiệu lưỡng phân cực dưới milimét (submillimeter dual-polarization receivers), chuẩn tần số ổn định cao cho phép VLBI hoạt động ở 230 – 450 GHz (bước sóng 3,5 mm), thiết bị thu phía sau ở dải tần số rộng higher bandwidth VLBI backends and recorders, cũng như chạy thử những trạm quan sát VLBI dưới milimét mới. Đối với các thành viên tham gia vào dự án, EHT sẽ phải gửi các nhà nghiên cứu đến các trạm quan sát, chỉnh sửa phần cứng thiết bị, lắp đặt bộ xử lý tính hiệu số và bộ ghi dữ liệu mới. Từ khi dữ liệu đầu tiên thu nhận được vào năm 2006, đã có thêm nhiều nhà thiên văn tham gia vào dự án trên toàn thế giới. Qua các năm, EHT đã mở rộng từ một đội nhỏ các nhà nghiên cứu không được tài trợ chi phí trở thành một tổ chức quốc tế bao gồm hơn 30 trường đại học, trung tâm quan sát và các viện nghiên cứu, cơ quan chính phủ từ 12 nước. EHT sử dụng nền tảng hệ thống wiki để thiết lập trang web nội bộ làm nơi trao đổi thông tin giữa các nhà nghiên cứu.

Việc tham gia của ALMA là yếu tố quan trọng đối với dự án EHT. Năm 2014, các nhà khoa học đã lắp đặt một đồng hồ nguyên tử được thiết kế đặc biệt hoạt động dựa trên maser hiđrô ở ALMA để thay thế đồng hồ nguyên tử cũ chạy bằng khí rubidium mang lại việc đếm thời gian chính xác hơn. Khi hoàn thành, không những ALMA đáp ứng được tiêu chuẩn đối với các kính thiên văn của dự án EHT, nó cũng là một trong những thiết bị đo lường chính xác nhất. Việc bổ sung của nó đã làm tăng độ nhạy của toàn dự án lên 10 lần (2000 lần lớn hơn kính thiên văn Hubble). Số lần quan sát của EHT sẽ tăng lên đáng kể, và các kính thiên văn vô tuyến sẽ bao phủ trên phạm vi rộng giữa bắc bán cầu và nam bán cầu cùng đội ngũ các nhà nghiên cứu được cử tới mỗi trạm quan sát. Năm 2015, ALMA thực hiện thử nghiệm kỹ thuật VLBI lần đầu tiên khi tham gia vào dự án EHT. Trong thử nghiệm, ALMA kết nối với kính thiên văn Atacama Pathfinder Experiment (APEX) tạo thành đường cơ sở dài 2 km và mục tiêu quan sát là quasar 0522-364 mà thường được sử dụng làm đối tượng hiệu chuẩn trong quan sát thiên văn vô tuyến. Hai trạm thực hiện quan sát trong 5 giây và gửi dữ liệu qua đường truyền internet về đài quan sát Haystack để các nhà nghiên cứu có thể xác nhận hệ thống hoạt động một cách bình thường. Do lượng dữ liệu ở mỗi lần quan sát là rất lớn, cách tốt nhất để gửi dữ liệu về các trung tâm xử lý là gửi các ổ cứng dữ liệu qua đường chuyển phát nhanh. Đội nghiên cứu đã xác nhận cuộc thử nghiệm đã kết thúc thành công.

Kính thiên văn Nam Cực (SPT) tham gia vào dự án EHT năm 2015. Do vị trí của nó nằm gần trục quay Trái Đất và trên độ cao lớn, không khí quanh trạm rất khô và phù hợp cho quan sát trong thời gian dài. Cho tới năm 2015, kính thiên văn Chân trời sự kiện đã có 9 năm quan sát. Tuy nhiên, dữ liệu thu được ở thời điểm đó chỉ đến từ ba ăng ten tham gia từ đầu dự án, và độ phân giải không đủ để tính toán ra hình ảnh của biên giới lỗ đen. Sau đó, đã có thêm nhiều đài quan sát vô tuyến tham gia vào dự án mạng lưới kính thiên văn toàn cầu của EHT. Các trạm tham gia vào nằm ở Chile, Pháp, Tây Ban Nha, Greenland, Mexico và Hoa Kỳ. Tháng Tư năm 2017 lần đầu tiên kính thiên văn tổng hợp có đường kính tương đương Trái Đất của EHT đã thực hiện quan sát Sagittarius A*.

Chương trình quan sát

Quan sát ở chế độ mạng lưới

Dự án Kính thiên văn Chân trời sự kiện chỉ có thể thực hiện quan sát với mạng lưới toàn cầu một lần trong một năm, phụ thuộc vào kế hoạch quan sát của các đài quan sát, thời tiết và thời điểm Sagittarius A và M87 ở vị trí thuận lợi quan sát trên bầu trời. Ở thời điểm quan sát đầu tiên năm 2006, chỉ có ba đài quan sát được kết nối với nhau. EHT bắt đầu quan sát Sagittarius A năm 2007 và M87 năm 2009. Mặc dù ban đầu độ phân giải góc khá thấp, dữ liệu thu được đã mang lại những kết quả khoa học quan trọng. Sau nhiều năm chuẩn bị, công nghệ kính thiên văn đã dần đạt tới tiêu chuẩn cho phép quan sát chân trời sự kiện những năm gần đây. Từ lúc bắt đầu dự án, các nhà thiên văn đã điều phối thời gian quan sát giữa một vài kính thiên văn, và cũng thiết lập các thiết bị cần thiết để trang bị cho các trạm quan sát. Bởi vì bước sóng quan sát nằm trong dải bị hơi nước hấp thụ, quá trình quan sát bị ảnh hưởng lớn bởi thời tiết, và do đó hầu hết các trạm của EHT nằm ở những nơi có thời tiết ổn định vào mùa đông.

Tháng Tư 2017, lần đầu tiên dự án EHT đã có đủ số lượng trạm quan sát cần thiết để đạt tới độ phân giải góc đủ để quan sát các chân trời sự kiện mục tiêu. Trung tâm điều hành quan sát được chuyển đổi từ văn phòng "Dự án quan sát Lỗ đen" thuộc Đại học Harvard sẽ tổ chức gặp hàng ngày trong thời gian 10 ngày từ 5 đếb 14 tháng 4 để xác định điều kiện quan sát và đảm bảo tổng thời gian quan sát sẽ là 5 ngày. Thời tiết và tình trạng thiết bị ở tất cả các đài quan sát trong 3 đêm đầu tiên đều rất tốt. Sang ngày thứ 4 và thứ 5, trung tâm điều hành cho tạm dừng quan sát để cho các nhà thiên văn học và kỹ thuật viên được nghỉ ngơi và bảo trì thiết bị, và hai ngày quan sát còn lại được thực hiện nốt trong 5 ngày dự kiến cuối cùng. Dự án Mảng kính thiên văn đường cơ sở dài toàn cầu quan sát trong bước sóng millimét (Global Millimeter Very Long Baseline Array, GMVA) cũng đã quan sát Sagittarius A* trước đó từ 1 đến 4 tháng Tư. Dự án GMVA tập trung vào quan sát đĩa bồi tụ và tia phóng ra từ vùng trung tâm thiên hà, trong khi dự án EHT cố gắng tập trung vào chụp ảnh biên giới của lỗ đen. Trước khi thực hiện mục đích quan sát chính, EHT cũng đã tiến hành quan sát môi trường xung quanh hai hố đen, nhưng các lần đó chưa có sự tham gia của ALMA và kính thiên văn SPT. ALMA là một thành viên quan trọng của cả hai dự án, không những nó là hệ thống kính thiên văn lớn nhất và nhạy nhất, mà còn là bởi vị trí của nó nằm ở bán cầu nam. Từ những bức ảnh đầu tiên thu được các nhà thiên văn có thể kiểm chứng một số dự đoán cơ bản của thuyết tương đối tổng quát của Einstein, nhà thiên văn vô tuyến Heino Falcke nói rằng những bức ảnh này có thể làm lỗ đen từ một vật thể bí ẩn trở thành một thực thể được khoa học nghiên cứu. Tuy nhiên, bởi vì các nhà khoa học ở Nam Cực ở thời điểm tháng Tư là mùa đông ở bán cầu nam, cho nên các ổ cứng chứa dữ liệu quan sát không được chuyển về trung tâm xử lý ngay mà phải đợi đến tháng 10 năm 2017 mới có máy bay có thể hoạt động ở Nam Cực,, và toàn bộ dữ liệu quan sát của dự án phải được xử lý và dự kiến kết quả được công bố tại thời điểm đầu năm 2019.

Trong tương lai, các nhà thiên văn tiếp tục phát triển các kỹ thuật và công nghệ thiết bị quan sát nhằm cải thiện độ phân giải, áp dụng các phương pháp tính toán mới..., như tăng tần số quan sát lên 345 GHz hoặc bước sóng quan sát giảm xuống 0,87 mm. Tại tần số 230 GHz EHT có đủ khả năng để quan sát đĩa bồi tụ quanh lỗ đen, và ở 345 GHz nó sẽ có thể nhìn sâu hơn và quan sát vùng quỹ đạo photon quanh lỗ đen. Các nhà thiên văn cũng hi vọng trong tương lai họ có thể thực hiện quay phim quá trình vật chất rơi vào bên trong và biến mất khỏi chân trời sự kiện. Dự án cũng bổ sung thêm các đài quan sát khác trong tương lai như kính thiên văn Greenland gia nhập vào EHT năm 2018 cũng như các đài quan sát khác đặt ở châu Phi và trong không gian.

Global mm-VLBI Array

Dự án Mảng kính thiên văn đường cơ sở dài toàn cầu quan sát trong bước sóng millimét (Global mm-VLBI Array, GMVA) cũng là một mạng lưới kính thiên văn vô tuyến với kỹ thuật áp dụng tương tự EHT. Các đài quan sát của nó là những kính thiên văn quan sát bước sóng dưới milimét ở Hawaii và ALMA ở Chile, kính thiên văn Green Bank ở Hoa Kỳ, và nhiều kính thiên văn vô tuyến khác ở Pháp, Đức, Tây Ban Nha, Phần Lan, và Thụy Điển. Sự khác nhau ở hai dự án đó là bước sóng quan sát của GMVA là 3 mm, trong khi của EHT là 1.3 mm. Đối tượng quan sát của hai dự án đều là Sagittarius A * và M87, với GMVA quan sát đĩa bồi tụ và luồng tia tương đối tính còn EHT quan sát vùng chân trời sự kiện.

Kết quả

nhỏ|Ảnh chụp [[M87 dưới ánh sáng phân cực.]] Một số kết quả quan trọng thu được từ 2006 đến 2019 được liệt kê ở dưới: Nếu hố đen Sagittarius A và M87 không có chân trời sự kiện, trong quang phổ bức xạ phát ra từ bề mặt sẽ xuất hiện đỉnh nhọn ở các bước sóng hồng ngoại gần khi vật chất từ đĩa bồi tụ cuốn rơi vào bề mặt. Tuy nhiên, EHT đã không quan sát thấy hiện tượng này, có nghĩa rằng các hố đen tồn tại chân trời sự kiện, mà được định nghĩa cho biên giới của chúng. Các dữ liệu quan sát giúp hạn chế mô hình miêu tả lỗ đen Sagittarius A và M87. Theo hai mô hình này, các vec tơ trục quay của chúng nghiêng tương đối so với hướng quan sát, và mép của đĩa bồi tụ nằm gần về phía Trái Đất hơn so với bề mặt của đĩa. Thuyết tương đối rộng dự đoán trường hấp dẫn mạnh làm cho các vật ở gần lỗ đen trông như lớn hơn so với kích thước thật của chúng. Sau khi xem xét đến sự tán xạ bởi môi trường liên sao, cỡ ảnh từ bức xạ trong bước sóng milimét chụp được bởi các nhà thiên văn cho kích thước nhỏ hơn 30% so với giá trị lý thuyết. Một cách để giải thích hiện tượng này là bức xạ milimét phát ra từ đĩa bồi tụ, và hiệu ứng Doppler làm cho hình ảnh đĩa bồi tụ có dạng bất đối xứng xung quanh lỗ đen. Các nhà thiên văn quan sát thấy độ trắng của bức xạ phát ra từ Sagittarius A thay đổi theo thời gian, nhưng kích thước của vùng phát xạ lại không thay đổi. Mặc dù họ vẫn chưa biết cơ chế cho hiện tượng này, dữ liệu EHT chỉ ra những sự thay đổi này liên quan đến vị trí vật chất trên đĩa bồi tụ nằm rất gần với chân trời sự kiện. Bức xạ từ trung tâm M87 chỉ ra lỗ đen khổng lồ của nó quay rất nhanh, đồng thời dựa trên quan sát tia tương đối tính phóng ra tương đối xa, các nhà thiên văn đi đến kết luận cấu trúc và vận tốc của tia này do từ trường của đĩa bồi tụ gây ra. Ảnh chụp đầu tiên về vùng bóng tối bao quanh lỗ đen ở trung tâm thiên hà M87 đã được công bố vào ngày 10 tháng 4 năm 2019.

Các bên tham gia

Các đài quan sát vô tuyến

Các đài quan sát vô tuyến tham gia bao gồm

Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT) Atacama Pathfinder EXperiment (APEX) Atacama Submillimeter Telescope Experiment (ASTE) IRAM 30-meter telescope James Clerk Maxwell Telescope (JCMT) The Large Millimeter Telescope (LMT) The Submillimeter Array (SMA) Atacama Large Millimeter/Submillimeter Array (ALMA) South Pole Telescope Kitt Peak National Observatory (KPNO) Greenland Telescope Project Northern Extended Millimeter Array (NOEMA) Combined Array for Research in Millimeter-wave Astronomy (CARMA) Caltech Submillimeter Observatory (CSO)

Tập tin:The Event Horizon Telescope and Global mm-VLBI Array on the Earth.jpg

Bản đồ vị trí các đài quan sát tham gia vào dự án EHT (xanh lam) và GMVA (vàng). Trong đó hai đài quan sát ALMA và IRAM tham gia cả hai dự án.

Các tổ chức tham gia

Sau cuộc họp đầu tiên vào năm 2012, EHT đã tổ chức các cuộc họp lần thứ hai và thứ ba lần lượt vào năm 2014 và 2016, kêu gọi các bên tham gia gây quỹ cho các hoạt động của EHT. Các bên tham gia tham gia đánh giá mục đích của EHT, cải tiến mô hình lý thuyết, phân tích dữ liệu, phát triển công nghệ liên quan, chiến lược quan sát và cơ cấu tổ chức dự án.

Các bên tham gia đã được liệt kê trên trang web chính thức của dự án:

  • ALMA
  • APEX *Viện Thiên văn và Thiên văn Vật lý Academia Sinica
  • Đài quan sát vô tuyến Arizona, Đại học Arizona
  • Đài quan sát vô tuyến dưới milimét Caltech (CSO)
  • Combined Array for Research in Millimeter-wave Astronomy (Caltech)
  • Đài thiên văn Nam Châu Âu (ESO)
  • Đại học Georgia State
  • Johann Wolfgang Goethe-Universität Frankfurt am Main
  • Kính thiên văn Greenland
  • Trung tâm Thiên văn vật lý Harvard–Smithsonian
  • Đài quan sát Haystack, MIT
  • Institut de radioastronomie millimétrique (IRAM)
  • Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)
  • East Asian Observatory - James Clerk Maxwell Telescope
  • Large Millimeter Telescope (LMT)
  • Max Planck Institut für Radioastronomie
  • Đài quan sát thiên văn quốc gia Nhật Bản (NAOJ)
  • Quỹ Khoa học Quốc gia (NSF) ** Đài quan sát thiên văn vô tuyến quốc gia (NRAO)
  • Đại học Massachusetts Amherst
  • Đài quan sát không gian Onsala (OSO)
  • Viện Vật lý lý thuyết Perimeter
  • Radio Astronomy Laboratory, UC Berkeley ** Đại học California, Berkeley (RAL)
  • Radboud Universiteit Nijmegen
  • Đài quan sát thiên văn Thượng Hải (SHAO)
  • Submillimeter Array (SMA)
  • Universidad de Concepción
  • Universidad Nacional Autónoma de México (UNAM)
  • Đại học Chicago (South Pole Telescope)
  • Đại học Illinois Urbana-Champaign
  • Đại học Michigan
👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
350x350px|thumb|Logo chính thức của Kính thiên văn Chân trời sự kiện **Kính thiên văn Chân trời sự kiện** (tiếng Anh: **E**vent **H**orizon **T**elescope, **EHT**) là một dự án và là chương trình quan sát thiên
phải|nhỏ|Biểu đồ không thời gian **Chân trời sự kiện** là biên phía trong của không-thời gian gần một điểm kỳ dị, tất cả các loại vật chất nếu nằm dưới giới hạn này, kể cả
**Kính thiên văn Không gian James Webb** (**JWST**), trước đó gọi là **Kính thiên văn không gian thế hệ tiếp theo** (**NGST**), là một kính viễn vọng không gian đã được chế tạo và đã
**Đài thiên văn phía Nam của Châu Âu** (tiếng Anh: _European Southern Observatory_ (ESO), tiếng Pháp: _Observatoire européen austral_), tên chính thức là **Tổ chức Nghiên cứu thiên văn châu Âu tại Nam Bán cầu**
[[Đĩa bồi tụ bao quanh lỗ đen siêu khối lượng ở trung tâm của thiên hà elip khổng lồ Messier 87 trong chòm sao Xử Nữ. Khối lượng của nó khoảng 7 tỉ lần khối
_[[Nhà thiên văn học (Vermeer)|Nhà thiên văn_, họa phẩm của Johannes Vermeer, hiện vật bảo tàng Louvre, Paris]] **Thiên văn học** là một trong những môn khoa học ra đời sớm nhất trong lịch sử
**Đơn vị thiên văn** (ký hiệu: au) là một đơn vị đo chiều dài, xấp xỉ bằng khoảng cách từ Trái Đất đến Mặt Trời. Tuy nhiên, bởi vì khoảng cách này thay đổi khi
**Ngân Hà**, **Sông Ngân** là một thiên hà chứa Hệ Mặt Trời của chúng ta. Nó xuất hiện trên bầu trời như một dải sáng mờ kéo dài từ chòm sao Tiên Hậu (Cassiopeia) ở
**Sự kiện 11 tháng 9**, còn được gọi là **vụ khủng bố ngày 11 tháng 9**, **cuộc tấn công ngày 11 tháng 9** hay đơn giản là **11/9** (; ở Hoa Kỳ thường được gọi
nhỏ|247x247px|Đỉnh điểm (_culmination_) của một ngôi sao là khi đường chuyển động biểu kiến hàng ngày của nó cắt đường kinh tuyến (_meridian_) nơi quan sát. Trong thiên văn học quan sát, **đỉnh điểm** hay
nhỏ|252x252px|Một vài tinh vân trong [[chòm sao Orion, thường được gọi là _thiên thể bầu trời sâu_]] Một **thiên thể bầu trời sâu** (deep-sky object, **DSO**) hay **thiên thể xa** là một thiên thể không
phải|nhỏ|350x350px|Hệ tọa độ chân trời sử dụng một [[thiên cầu lấy tâm là người quan sát. Góc phương vị được đo từ điểm bắc (nhưng đôi khi từ điểm nam) và thuận theo hướng đông
thumb|_[[Chúa Kitô chịu đóng đinh (Velázquez)|Giêsu chịu đóng đinh_ (kh. 1632), tranh của Diego Velázquez. Bảo tàng Prado, Madrid]] **Sự kiện đóng đinh Giêsu** (còn gọi là _cuộc đóng đinh của Giêsu, cuộc khổ hình
:_Bài viết này có chứa ngày tháng tham khảo theo Lịch Julius đã cũ. Cần nhớ ngày tháng đó có thể không đồng nhất với Lịch Gregory._ **Sự kiện Tunguska** là một vụ nổ xảy
**Messier 87** (hay còn có tên gọi khác là **Xử Nữ A** hoặc **NGC 4486**, thường được viết gọn là **M87**) là một thiên hà elip siêu khổng lồ gồm 1 nghìn tỷ ngôi sao
**Sao Thiên Vương** (tiếng Anh: **Uranus**) hay **Thiên Vương Tinh** (chữ Hán: 天王星) là hành tinh thứ bảy tính từ Mặt Trời, là hành tinh có bán kính lớn thứ ba và có khối lượng
thumb|Bản vẽ của một nghệ sĩ về một [[tiểu hành tinh cách nhau vài km va chạm vào Trái Đất. Một tác động như vậy có thể giải phóng năng lượng tương đương với vài
nhỏ|phải|Chân trời trên biển được nhìn ở [[Wisconsin, Hoa Kỳ.]] nhỏ|Một hình ảnh khá độc đáo mà những [[nhà du hành vũ trụ thường gặp. Đường chân trời chia thành các lớp đầy màu sắc,
**Khoảng cách Trái Đất – Mặt Trăng** tức thời, hay **khoảng cách tới Mặt Trăng**, là khoảng cách từ tâm của Trái Đất đến tâm của Mặt Trăng. **Khoảng cách Mặt Trăng** (ký hiệu: **LD**
nhỏ| [[Mặt Trăng là vật thể chính thường được quan sát nhiều nhất trên bầu trời đêm, và đôi khi có thể nhìn thấy vào ban ngày. ]] nhỏ|Tranh khắc Flammarion, Paris 1888 Thuật ngữ
**Danh sách các sự kiện trong lịch sử Nhật Bản** ghi lại các sự kiện chính trong lịch sử Nhật Bản theo thứ tự thời gian. ## Cổ đại ### Thời kỳ đồ đá cũ
Trong thiên văn học, **hệ tọa độ thiên văn** là một hệ tọa độ mặt cầu dùng để xác định vị trí biểu kiến của thiên thể trên thiên cầu. Trong tọa độ Descartes, một
Từ ngày 28 tháng 1 đến ngày 4 tháng 2 năm 2023, một khinh khí cầu tầm cao lớn màu trắng do Trung Quốc vận hành đã được quan sát thấy trên không phận Bắc
**Kính viễn vọng** hay **kính thiên văn** là một dụng cụ giúp quan sát các vật thể nằm ở khoảng cách xa so với mắt của con người. Kính viễn vọng được ứng dụng trong
thumb|[[Đĩa bồi tụ bao quanh lỗ đen siêu khối lượng ở trung tâm của thiên hà elip khổng lồ Messier 87 trong chòm sao Xử Nữ. Khối lượng của nó ước tính bằng 6.5 ±
**Nhân Mã A*** (đọc là "_Sagittarius A-sao_", viết tắt tiêu chuẩn **Sgr A***), tiếng Việt là **Nhân Mã A*** là một nguồn phát vô tuyến thiên văn sáng và rất đậm đặc tại trung tâm
thế=An angle ε is drawn between two straight lines from Earth to the Sun, and from Earth to the planet. This is demonstrated for different positions along circular orbits, both for planets closer to the
**3C 279** (còn được biết đến với tên gọi là **4C–05.55**, **NRAO 413** hoặc **PKS 1253–05**) là tên của một chuẩn tinh biến đổi quang học rất mạnh. Trong cộng đồng thiên văn học, nó
Đầu thế kỷ XXI, những đồng minh quan trọng nhất của Hoa Kỳ ở Tây Á là Thổ Nhĩ Kỳ (thành viên của NATO), Israel và Ai Cập. Các quốc gia này vẫn nhận viện
thumb|Đĩa bồi tụ bao quanh [[lỗ đen siêu khối lượng ở trung tâm của thiên hà elip khổng lồ Messier 87 trong chòm sao Xử Nữ. Khối lượng của nó ước tính bằng vào năm
**Mặt Trời** hay **Thái Dương** (chữ Hán: 太陽), hay **Nhật** (chữ Hán: 日), là ngôi sao ở trung tâm Hệ Mặt Trời, chiếm khoảng 99,8% khối lượng của Hệ Mặt Trời. Trái Đất và các
thumb|[[Thiên hà Chong Chóng, một thiên hà xoắn ốc điển hình trong chòm sao Đại Hùng, có đường kính khoảng 170.000 năm ánh sáng và cách Trái Đất xấp xỉ 27 triệu năm ánh sáng.]]
nhỏ|Hình ảnh chụp vào [[Tháng bảy|tháng 7 năm 1997 cho thấy sao sáng Aldebaran vừa xuất hiện trở lại ở phần bóng tối của trăng lưỡi liềm sau khi bị che khuất vào vài phút
**Sự biến Tĩnh Khang** (), còn gọi **Loạn Tĩnh Khang** () hay **Sự sỉ nhục Tĩnh Khang** (), là một biến cố lớn trong lịch sử Trung Quốc xảy ra vào năm 1127, đánh dấu
File:2019 collage v1.png|Từ bên trái, theo chiều kim đồng hồ: Các cuộc biểu tình ở Hồng Kông 2019–2020 đã biến thành bạo loạn lan rộng và bất tuân dân sự; Hạ viện Hoa Kỳ bỏ
**Thế vận hội Mùa hè 2008 (**), (), **tên chính thức là Thế vận hội Mùa hè lần thứ XXIX** () và được chính thức thương hiệu hóa là **Bắc Kinh 2008** (), là một
**Sự kiện Tết Mậu Thân** (sách báo Việt Nam thường gọi là **_Tổng công kích và nổi dậy Tết Mậu Thân 1968_**) là cuộc tổng tiến công và vận động quần chúng nổi dậy giành
**Sự kiện 30 tháng 4 năm 1975** là sự kiện Quân Giải phóng miền Nam Việt Nam (QGPMNVN) tiến vào Sài Gòn, dẫn tới sự sụp đổ của Việt Nam Cộng hòa và chấm dứt
**Chân trời tím** là một phim lãng mạn do Lê Hoàng Hoa đạo diễn, xuất phẩm năm 1971 tại Sài Gòn. ## Lịch sử Truyện phim phỏng theo tiểu thuyết cùng tên của tác giả
**Tinh vân Con Cua** (các tên gọi danh lục M1, NGC 1952, Taurus A) là một tinh vân gió sao xung trong chòm sao Kim Ngưu, đồng thời là tàn tích của siêu tân tinh Thiên
nhỏ|Video về các [[pha Mặt Trăng và sự bình động trong năm 2019 ở Bắc Bán Cầu theo các khoảng giờ, với nhạc nền, chú thích, và đồ họa bổ sung.]] Trong thiên văn học
**Sự kiện chùa Honnō** là diễn biến dẫn đến việc Oda Nobunaga phải tự sát ngày 21 tháng 6 năm 1582 ở chùa Honnō tại kinh đô Kyoto. Nobunaga lúc bấy giờ là lãnh chúa
**Vụ tấn công Nhà Xanh** còn được biết đến ở Hàn Quốc là **Sự kiện 21 tháng 1** () là một cuộc đột kích do biệt kích Bắc Triều Tiên phát động nhằm ám sát
**Sự kiện UFO Nash-Fortenberry** là một vụ nhìn thấy vật thể bay không xác định xảy ra vào ngày 14 tháng 7 năm 1952, khi hai phi công thương mại (William B. Nash và William
File:2010s collage v21.png|Từ bên trái, theo chiều kim đồng hồ: Các cuộc biểu tình chống chính phủ được gọi là **Mùa xuân Ả Rập** đã bùng nổ vào năm 2010–2011, và kết quả là nhiều
**Huy chương Albert Einstein** () là một giải thưởng được Hội Albert Einstein (_Albert Einstein Society_) ở Bern (Thụy Sĩ). Huy chương được trao lần đầu tiên vào năm 1979, từ đó hàng năm huy
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
**Sao Thiên Lang** hay **Thiên Lang tinh** là ngôi sao sáng nhất trên bầu trời đêm với cấp sao biểu kiến là -1,46. Tên gọi theo định danh Bayer của sao Thiên Lang là **α
**_Hậu duệ Mặt Trời_** (; ) là một bộ phim truyền hình Hàn Quốc năm 2016 thuộc thể loại lãng mạn, tâm lý tình cảm và hành động, với sự tham gia của các diễn
thumb|Minh họa quá trình tiến triển của một [[sao|sao khối lượng lớn với hoạt động tổng hợp hạt nhân bên trong lõi sao, chuyển đổi các nguyên tố nhẹ thành các nguyên tố nặng hơn.