✨Vật lý thiên văn hạt nhân

Vật lý thiên văn hạt nhân

Vật lý thiên văn hạt nhân là một ngành vật lý liên ngành bao gồm sự hợp tác chặt chẽ giữa các nhà nghiên cứu trong các lĩnh vực khác nhau của vật lý hạt nhân và vật lý thiên văn: đáng chú ý là cấu trúc sao; đo lường và ước tính lý thuyết về tốc độ phản ứng hạt nhân; vũ trụ học vật lý và vũ trụ học hóa học; tia gamma, thiên văn quang học và tia X; và mở rộng kiến thức của chúng tôi về thời gian sống và khối lượng hạt nhân. Nói chung, vật lý thiên văn hạt nhân nhằm tìm hiểu nguồn gốc của các nguyên tố hóa học và sự tạo ra năng lượng trong các ngôi sao.

Lịch sử

Các nguyên tắc cơ bản để giải thích nguồn gốc của các nguyên tố và năng lượng tạo ra trong các ngôi sao xuất hiện trong lý thuyết tổng hợp hạt nhân, xuất hiện vào cuối những năm 1950 trong các công trình quan trọng của Burbidge, Burbidge, Fowler và Hoyle, và của Cameron. Fowler phần lớn được cho là đã khởi xướng sự hợp tác giữa các nhà thiên văn học, nhà vật lý thiên văn và nhà vật lý hạt nhân thực nghiệm mà ngày nay chúng ta gọi là vật lý thiên văn hạt nhân (ông đã giành giải thưởng Nobel năm 1983).

Các nguyên lý cơ bản của vật lý thiên văn hạt nhân là chỉ có các đồng vị của hydro và heli (và dấu vết của lithi, berylli và bo) có thể được hình thành trong mô hình Big Bang đồng nhất (xem tổng hợp hạt nhân Big Bang), trong khi tất cả các nguyên tố khác được hình thành trong các ngôi sao. Chuyển đổi khối lượng hạt nhân thành năng lượng bức xạ (theo mối quan hệ năng lượng khối lượng nổi tiếng của Einstein) là điều cho phép các ngôi sao tỏa sáng trong hàng tỷ năm. Nhiều nhà vật lý đáng chú ý của thế kỷ 19 như Mayer, Waterson, von Helmholtz và Lord Kelvin đã tuyên bố rằng Mặt Trời tỏa năng lượng nhiệt bằng cách chuyển đổi thế năng hấp dẫn thành nhiệt năng. Theo mô hình như vậy, tuổi thọ của nó có thể được tính toán tương đối dễ dàng bằng định lý siêu vi - khoảng 19 triệu năm, không phù hợp với việc giải thích các niên đại địa chất và lý thuyết tiến hóa sinh học (sau đó mới). Một back-of-the-phong bì tính toán chỉ ra rằng nếu mặt trời bao gồm toàn bộ một nhiên liệu hóa thạch như than (một nguồn năng lượng quen thuộc với nhiều), xem xét tốc độ phát xạ năng lượng nhiệt, tuổi thọ của pin sẽ chỉ là bốn hay năm ngàn năm, thậm chí không phù hợp với hồ sơ của nền văn minh nhân loại. Mặc dù bây giờ mất uy tín, giả thuyết này cho rằng nguồn năng lượng chính của Mặt trời là lực hấp dẫn là hợp lý trước sự ra đời của vật lý hiện đại; Bản thân phóng xạ đã không được Becquerel phát hiện cho đến năm 1895. Bên cạnh kiến thức tiên quyết về hạt nhân nguyên tử, không thể có sự hiểu biết đúng đắn về năng lượng sao nếu không có lý thuyết về thuyết tương đối và cơ học lượng tử.

Sau khi Aston chứng minh rằng khối lượng heli nhỏ hơn bốn lần so với proton, Eddington đề xuất rằng, thông qua một quá trình chưa biết trong lõi của Mặt trời, hydro được chuyển hóa thành heli, giải phóng năng lượng. Hai mươi năm sau, Bethe và von Weizsäcker độc lập khám phá chu trình CN, phản ứng hạt nhân được biết đến đầu tiên thực hiện chuyển đổi này. Tuy nhiên, nguồn năng lượng chính của Mặt trời hiện được hiểu là các phản ứng chuỗi proton-proton, xảy ra ở năng lượng thấp hơn nhiều và chậm hơn nhiều so với phản ứng tổng hợp hydro xúc tác. Khoảng thời gian giữa đề xuất của Eddington và phái sinh của chu trình CN chủ yếu có thể được quy cho sự hiểu biết không đầy đủ về cấu trúc hạt nhân. Một sự hiểu biết đúng đắn về các quá trình tổng hợp hạt nhân chỉ xuất hiện khi Chadwick phát hiện ra neutron vào năm 1932 và lý thuyết phân rã beta được phát triển. Vật lý hạt nhân đưa ra một bức tranh về nguồn năng lượng của Mặt Trời tạo ra một đời phù hợp với độ tuổi của Hệ Mặt Trời có nguồn gốc từ phong phú của chì và uranium đồng vị trên vẫn thạch - khoảng 4,5 tỷ năm. Khối lượng các ngôi sao như Mặt trời cho phép đốt cháy hydro lõi trên dãy chính của sơ đồ Hertzsprung - Russell thông qua chuỗi pp trong khoảng 9 tỷ năm. Điều này chủ yếu được xác định bởi việc sản xuất deuteri cực kỳ chậm,

được chi phối bởi lực hạt nhân yếu. giữa|nhỏ|800x800px| Sự phong phú của các nguyên tố hóa học trong Hệ mặt trời. Hydrogen và helium là phổ biến nhất, còn lại trong mô hình của Vụ nổ lớn. Ba yếu tố tiếp theo (Li, Be, B) rất hiếm vì chúng được tổng hợp kém trong Big Bang và cả trong các ngôi sao. Hai xu hướng chung trong các yếu tố sản xuất sao còn lại là: (1) sự xen kẽ của các yếu tố tùy theo chúng có số nguyên tử chẵn hay lẻ, và (2) sự suy giảm chung, vì các yếu tố trở nên nặng hơn. Trong xu hướng này là một đỉnh cao về sự phong phú của sắt và niken, đặc biệt có thể nhìn thấy trên biểu đồ logarit bao gồm ít năng lượng hơn mười, giả sử giữa logA = 2 (A = 100) và logA = 6 (A = 1.000.000).

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Vật lý thiên văn hạt nhân** là một ngành vật lý liên ngành bao gồm sự hợp tác chặt chẽ giữa các nhà nghiên cứu trong các lĩnh vực khác nhau của vật lý hạt
phải|[[Siêu tân tinh Kepler]] **Vật lý thiên văn** là một phần của ngành thiên văn học có quan hệ với vật lý ở trong vũ trụ, bao gồm các tính chất vật lý (cường độ
**Vật lý hạt thiên văn** là một nhánh của vật lý hạt chuyên nghiên cứu các hạt cơ bản có nguồn gốc thiên văn và mối quan hệ của chúng trong vật lý thiên văn
nhỏ|Vật lý Mặt Trời **Vật lý mặt trời** là nhánh của vật lý thiên văn chuyên nghiên cứu về Mặt Trời. Nó liên quan đến các phép đo chi tiết chỉ có thể cho ngôi
thumb|upright|[[Wilhelm Röntgen (1845–1923), người đầu tiên nhận giải Nobel Vật lý.]] Mặt sau huy chương giải Nobel vật lý **Giải Nobel Vật lý** là giải thưởng hàng năm do Viện Hàn lâm Khoa học Hoàng
_[[Nhà thiên văn học (Vermeer)|Nhà thiên văn_, họa phẩm của Johannes Vermeer, hiện vật bảo tàng Louvre, Paris]] **Thiên văn học** là một trong những môn khoa học ra đời sớm nhất trong lịch sử
**Vật lý hạt nhân** là một nhánh của vật lý đi sâu nghiên cứu về hạt nhân của nguyên tử (gọi tắt là hạt nhân). Các ứng dụng phổ biến nhất được biết đến của
thumb|"Tôi nhìn xa hơn, bởi lẽ tôi đã đứng trên vai của những người khổng lồ. " – [[Isaac Newton ]] Vật lý (từ tiếng Hy Lạp cổ đại φύσις _physis_ có nghĩa "tự nhiên") là chi
nhỏ|Hình ảnh minh họa nguyên tử heli. Trong hạt nhân, proton có màu hồng và neutron có màu tía **Hạt nhân nguyên tử** là cấu trúc vật chất đậm đặc chiếm khối lượng chủ yếu
**Quá trình bắt neutron nhanh**, hay còn gọi là **quá trình** **_r_**, là một tập hợp các phản ứng hạt nhân mà trong vật lý thiên văn hạt nhân chịu trách nhiệm tạo ra khoảng
**Tổng hợp hạt nhân siêu tân tinh** là sự tổng hợp hạt nhân của các nguyên tố hóa học trong vụ nổ siêu tân tinh. Trong các ngôi sao đủ lớn, quá trình tổng hợp
**Thiên văn học lý thuyết** là việc sử dụng các hình mẫu phân tích vật lý và hóa học để mô tả các đối tượng thiên văn và hiện tượng thiên văn. Almagest, tác phẩm
nhỏ|Cơ sợ của hiệp hội thiên văn Hoàng gia tại tòa nhà Burlington, Anh **Hội Thiên văn Vương thất** (RAS) được thành lập vào ngày 10 tháng 3 năm 1820 để hỗ trợ cho việc
**Tổng hợp hạt nhân** là quá trình tạo mới hạt nhân nguyên tử từ nucleon (proton và neutron) tồn tại trước đó. Các hạt nhân đầu tiên được hình thành vài phút sau Vụ nổ
**Quá trình bắt neutron chậm**, hay **quá trình** **_s_** là một chuỗi các phản ứng trong vật lý thiên văn hạt nhân xảy ra trong các ngôi sao, đặc biệt là các sao AGB. Quá
**Tổng hợp hạt nhân sao** là quá trình qua đó nguồn nguyên tố hóa học dồi dào tự nhiên trong các ngôi sao biến đổi do phản ứng tổng hợp hạt nhân trong các lõi
**Vật lý không gian** là nghiên cứu về plasma khi chúng xảy ra một cách tự nhiên trong của Trái Đất thượng tầng khí quyển và trong Hệ Mặt Trời. Như vậy, nó bao gồm
thumb|Sơ đồ [[hệ thống quan sát neutrino _Icecube_ đặt tại Nam cực]] thumb| Hình ảnh neutrino của [[siêu tân tinh SN 1987A, một siêu tân tinh P-type II trong Large Magellanic Cloud, _NASA_.]] thumb|Một [[hệ
Cùng với Vũ trụ trong vỏ hạt dẻ, Lược sử thời gian được xem là cuốn sách nổi tiếng và phổ biến nhất về vũ trụ học của Stephen Hawking, liên tục được nằm trong
Cùng với Vũ trụ trong vỏ hạt dẻ, Lược sử thời gian được xem là cuốn sách nổi tiếng và phổ biến nhất về vũ trụ học của Stephen Hawking, liên tục được nằm trong
thumb|[[Mặt Trăng quan sát bằng Kính viễn vọng EGRET (Energetic Gamma Ray Experiment Telescope) với tia gamma năng lượng ≥20 MeV, hình thành do hạt vũ trụ bắn phá bề mặt.]] thumb|[[Kính viễn vọng khí
nhỏ|phải|[[Nhà máy điện hạt nhân Ikata, lò phản ứng nước áp lực làm lạnh bằng chất lỏng trao đổi nhiệt thứ cấp với đại dương.]] nhỏ|phải|Ba loại tàu năng lượng hạt nhân, từ trên xuống
Một **hạt nhân phóng xạ** (hoặc **đồng vị phóng xạ**) là một nguyên tử có năng lượng hạt nhân dư thừa, làm cho nó không ổn định. Năng lượng dư thừa này có thể được
Phòng thí nghiệm vũ trụ học và hạt thiên văn (tiếng Anh: **Astroparticle and Cosmology Laboratory** (**APC**)) được thành lập vào tháng 1 năm 2005 để liên kết các nhà khoa học đã hợp tác
**Nhà máy điện hạt nhân Ninh Thuận** là tên gọi chung của chuỗi hai nhà máy điện hạt nhân I và II được lập dự án xây dựng cho đến năm 2016 tại tỉnh Ninh
**Chương trình vũ khí hạt nhân của Nhật Bản** diễn ra trong Chiến tranh thế giới thứ 2. Giống như chương trình vũ khí hạt nhân của Đức Quốc xã, quá trình phát triển đã
Một hạt nhân nguyên tử ở trạng thái plasma với những tia plasma mở rộng từ [[điện cực bên trong tới lớp thủy tinh cách điện bên ngoài, tạo ra nhiều chùm sáng.]] **Plasma** ()
thumb|[[Thiên hà Chong Chóng, một thiên hà xoắn ốc điển hình trong chòm sao Đại Hùng, có đường kính khoảng 170.000 năm ánh sáng và cách Trái Đất xấp xỉ 27 triệu năm ánh sáng.]]
**Vật lý hạt** là một ngành của vật lý nghiên cứu về các hạt sơ cấp chứa trong vật chất và bức xạ, cùng với những tương tác giữa chúng. Nó còn được gọi là
**Địa vật lý** là một ngành của _khoa học Trái Đất_ nghiên cứu về các quá trình vật lý, tính chất vật lý của Trái Đất và môi trường xung quanh nó. Phạm trù địa
Trong phạm vi của ngành vũ trụ học, **hằng số vũ trụ** (hay **hằng số vũ trụ học**) là dạng mật độ năng lượng đồng nhất gây ra sự _giãn nở gia tốc_ của vũ
**Lý thuyết dây** là một thuyết hấp dẫn lượng tử, được xây dựng với mục đích thống nhất tất cả các hạt cơ bản cùng các lực cơ bản của tự nhiên, ngay cả lực
**Vật lý vật chất ngưng tụ** là một trong các nhánh của vật lý học nghiên cứu các tính chất vật lý trong pha ngưng tụ của vật chất. Các nhà vật lý vật chất
**Đại học Vật lý Kỹ thuật Moskva (MIPT,** tiếng Nga: Московский Физико-Технический институт), còn được biết đến với tên gọi **Phystech** - là trường đại học hàng đầu của Nga, chuyên đào tạo các chuyên
thế=In this animation depicting an infinite and homogeneous sky, successively more distant stars are revealed in each frame. As the animation progresses, the more distant stars fill the gaps between closer stars in the field
**Đơn vị thiên văn** (ký hiệu: au) là một đơn vị đo chiều dài, xấp xỉ bằng khoảng cách từ Trái Đất đến Mặt Trời. Tuy nhiên, bởi vì khoảng cách này thay đổi khi
Trong vật lý thiên văn, thuật ngữ **vật chất tối** chỉ đến một loại vật chất giả thuyết trong vũ trụ, có thành phần chưa hiểu được. Vật chất tối không phát ra hay phản
Thuật ngữ **Quá trình p** (_p_ là proton) được sử dụng theo hai cách trong tài liệu khoa học liên quan đến nguồn gốc vật lý thiên văn của các nguyên tố (là tổng hợp
350x350px|thumb|Logo chính thức của Kính thiên văn Chân trời sự kiện **Kính thiên văn Chân trời sự kiện** (tiếng Anh: **E**vent **H**orizon **T**elescope, **EHT**) là một dự án và là chương trình quan sát thiên
Kem chống nắng không có hóa chất, thành phần hoàn toàn từ thiên nhiên với độ chống nắng SPF30+ từ oxide kẽm – thành phần chống nắng vật lý thiên nhiên và an toàn .n.h.ấ.t.
nhỏ|295x295px|[[Đám mây hình nấm của quả bom nguyên tử _Fat Man_ ném xuống thành phố Nagasaki, Nhật Bản vào ngày 9 tháng 8 năm 1945.]] **Vũ khí hạt nhân** (chữ Nôm: 武器核仁, tiếng Anh: _nuclear
**Trần Thanh Vân** (còn được gọi là _Jean **Trần Thanh Vân**_) là tiến sĩ vật lý người Pháp gốc Việt. Năm 2012, ông là một trong ba người châu Á được tặng Huy chương Tate
**Hiệp ước cấm vũ khí hạt nhân** là điều ước quốc tế mang tính ràng buộc pháp lý đầu tiên cấm vũ khí hạt nhân nhằm hướng tới giải trừ hạt nhân hoàn toàn. Hiệp
**Nuclear Physics** hay **Vật lý hạt nhân** là tập san về Vật lý hạt nhân và Vật lý hạt, do Elsevier xuất bản, ra đời năm 1956. Năm 1967 nó được chia thành hai tập
**Vật chất lạ** (_strange matter_) là vật chất quark có chứa quark lạ. Trong tự nhiên, vật chất lạ được đưa ra giả thuyết xảy ra trong lõi của các sao neutron, hay cụ thể
**Rashid Alievich Sunyaev** (, ; sinh ngày 1 tháng 3 năm 1943 tại Tashkent, USSR) là nhà vật lý thiên văn người Liên Xô và Nga thuộc Tatar gốc. Ông được đào tạo tại Viện
thumb|Tình trạng địa chất ở [[Haut-Ogooue|Oklo, Gabon dẫn đến phản ứng phân hạch hạt nhân
1. Đới phản ứng phân hạch dây chuyền
2. Đá sa thạch
3. Lớp quặng urani
4. Granit]] **Lò phản ứng phân hạch hạt
liên_kết=https://vi.wikipedia.org/wiki/T%E1%BA%ADp tin:TMI_cleanup-2.jpg|nhỏ|Một nhóm dọn dẹp làm việc để loại bỏ [[ô nhiễm phóng xạ sau sự cố đảo Three Mile.]] **An toàn hạt nhân** được Cơ quan Năng lượng Nguyên tử Quốc tế (IAEA) định
**Vật chất suy biến** là các dạng vật chất có mật độ hay tỷ trọng cao một cách bất thường. Áp suất duy trì bởi một khối vật chất suy biến được gọi là áp
Trong vật lý, **lượng tử hóa** là quá trình chuyển đổi từ một quan niệm cổ điển của hiện tượng vật lý sang một quan niệm mới hơn được biết đến trong cơ học lượng