✨Định luật vạn vật hấp dẫn của Newton

Định luật vạn vật hấp dẫn của Newton

Định luật vạn vật hấp dẫn của Newton thường được phát biểu rằng mọi hạt đều hút mọi hạt khác trong vũ trụ với một lực tỷ lệ thuận với tích khối lượng của chúng và tỷ lệ nghịch với bình phương khoảng cách giữa các tâm của chúng. Việc công bố lý thuyết này được gọi là " sự thống nhất vĩ đại đầu tiên ", vì nó đánh dấu sự hợp nhất của các hiện tượng hấp dẫn được mô tả trước đây trên Trái đất với các hành vi thiên văn đã biết.

Đây là một định luật vật lý tổng quát rút ra từ những quan sát thực nghiệm của cái mà Isaac Newton gọi là suy luận quy nạp. Nó là một phần của cơ học cổ điển và được xây dựng trong công việc của Newton Các nguyên lý toán học của triết học tự nhiên ("Principia"), xuất bản lần đầu vào ngày 5 tháng 7 năm 1687. Khi Newton trình bày Quyển 1 của văn bản chưa được xuất bản vào tháng 4 năm 1686 cho Hiệp hội Hoàng gia, Robert Hooke tuyên bố rằng Newton đã ăn trộm ý tưởng về định luật nghịch đảo bình phương từ ông.

Trong ngôn ngữ ngày nay, định luật phát biểu rằng mọi khối lượng điểm đều hút mọi khối lượng điểm khác bằng một lực tác dụng dọc theo đường thẳng cắt hai điểm. Lực này tỉ lệ thuận với khối lượng, và tỉ lệ nghịch với bình phương khoảng cách giữa chúng.

Do đó, phương trình cho định luật vạn vật hấp dẫn có dạng:

  • F = G \frac{m_1 m_2}{r^2}

trong đó F là lực hấp dẫn tác dụng giữa hai vật, m1m2 là khối lượng của các vật, r là khoảng cách giữa các khối tâm của chúng và G là hằng số hấp dẫn.

Thử nghiệm đầu tiên về lý thuyết hấp dẫn của Newton giữa các khối lượng trong phòng thí nghiệm là thí nghiệm Cavendish do nhà khoa học người Anh Henry Cavendish tiến hành năm 1798. Nó đã diễn ra 111 năm sau khi xuất bản cuốn Principia của Newton và khoảng 71 năm sau khi ông qua đời.

Định luật hấp dẫn của Newton giống với định luật Coulomb về lực điện, được sử dụng để tính độ lớn của lực điện phát sinh giữa hai vật thể tích điện. Cả hai đều là luật nghịch đảo bình phương, trong đó lực tỷ lệ nghịch với bình phương khoảng cách giữa các vật. Định luật Coulomb có tích của hai điện tích thay cho tích của khối lượng, và hằng số Coulomb thay cho hằng số hấp dẫn.

Định luật Newton kể từ đó đã bị thay thế bởi thuyết tương đối rộng của Albert Einstein, nhưng nó vẫn tiếp tục được sử dụng như một phép gần đúng tuyệt vời về tác động của lực hấp dẫn trong hầu hết các ứng dụng. Thuyết tương đối chỉ được yêu cầu khi cần độ chính xác cực cao, hoặc khi đối phó với trường hấp dẫn rất mạnh, chẳng hạn như trường hấp dẫn được tìm thấy gần các vật thể cực lớn và dày đặc, hoặc ở khoảng cách nhỏ (chẳng hạn như quỹ đạo của sao Thủy xung quanh Mặt trời).

Lịch sử

Lịch sử ban đầu

Mối quan hệ giữa khoảng cách của các vật thể rơi tự do với bình phương thời gian được xác nhận gần đây bởi Grimaldi và Riccioli trong khoảng thời gian từ 1640 đến 1650. Họ cũng đã tính toán hằng số hấp dẫn bằng cách ghi lại các dao động của một con lắc.

Một đánh giá hiện đại về lịch sử ban đầu của luật bình phương nghịch đảo là "vào cuối những năm 1670", giả định về "tỷ lệ nghịch giữa lực hấp dẫn và bình phương khoảng cách khá phổ biến và đã được một số người khác nhau nâng cao cho các lý do ". Cùng một tác giả ghi nhận Robert Hooke với một đóng góp quan trọng, nhưng coi tuyên bố của Hooke về mức độ ưu tiên đối với điểm nghịch đảo bình phương là không liên quan, như một số cá nhân ngoài Newton và Hooke đã đề xuất nó. Thay vào đó, ông chỉ ra ý tưởng "cộng gộp các chuyển động của thiên thể " và việc chuyển đổi tư duy của Newton khỏi " ly tâm " và hướng tới lực " hướng tâm " là những đóng góp đáng kể của Hookie.

Newton đã ghi công trong cuốn sách Principia của mình cho hai người: Bullialdus (người đã viết mà không có bằng chứng rằng có một lực trên Trái đất đối với Mặt trời), và Borelli (người đã viết rằng tất cả các hành tinh đều bị hút về phía Mặt trời). Ảnh hưởng chính có thể là Borelli, với việc Newton có một bản sao cuốn sách của ông.

Tranh chấp đạo văn

Năm 1686, khi cuốn sách đầu tiên của Newton 's Principia được trình bày cho Hiệp hội Hoàng gia, Robert Hooke đã buộc tội Newton đạo văn bằng cách tuyên bố rằng ông đã lấy đi từ ông "khái niệm" về "quy luật giảm của Lực hấp dẫn, tương tự như bình phương của các khoảng cách từ Trung tâm. Đồng thời (theo báo cáo đương thời của Edmond Halley) Hooke đồng ý rằng "Sự trình diễn các đường cong được tạo ra từ đó" hoàn toàn là của Newton.

Theo cách này, câu hỏi đặt ra là Newton mắc nợ Hooke điều gì, nếu có. Đây là một chủ đề được thảo luận rộng rãi kể từ thời điểm đó và trên đó một số điểm, được nêu dưới đây, tiếp tục gây tranh cãi.

Nghiên cứu và tuyên bố của Hooke

Robert Hooke công bố ý tưởng của mình về "Hệ thống của thế giới" vào những năm 1660, khi ông đọc cho Hiệp hội Hoàng gia vào ngày 21 tháng 3 năm 1666, một bài báo "liên quan đến sự uốn cong của một chuyển động trực tiếp thành một đường cong bởi một nguyên lý hấp dẫn siêu việt", và ông đã xuất bản chúng một lần nữa dưới dạng đã phát triển hơn vào năm 1674, như một phần bổ sung cho "Nỗ lực chứng minh chuyển động của Trái đất từ các quan sát". Hooke tuyên bố vào năm 1674 rằng ông dự định "giải thích một Hệ thống của Thế giới khác biệt về nhiều đặc điểm so với bất kỳ điều gì chưa được biết đến", dựa trên ba giả thuyết: rằng "tất cả các Thiên thể, đều có sức hút hoặc sức mạnh hấp dẫn đối với Trung tâm của chính chúng" và " cũng thu hút tất cả các Thiên thể khác nằm trong phạm vi hoạt động của chúng "; rằng "tất cả các vật thể được đặt vào một chuyển động trực tiếp và đơn giản, sẽ tiếp tục chuyển động về phía trước theo một đường thẳng, cho đến khi chúng bị một số sức mạnh tác dụng khác làm lệch và uốn cong..." và rằng "những sức mạnh hấp dẫn này càng hoạt động càng mạnh mẽ bao nhiêu thì vật thể càng gần Trung tâm của họ bấy nhiêu ". Do đó, Hooke đã công nhận lực hút lẫn nhau giữa Mặt trời và các hành tinh, theo cách tăng lên khi ở gần vật hấp dẫn, cùng với nguyên lý quán tính tuyến tính.

Tuy nhiên, các tuyên bố của Hooke cho đến năm 1674 không đề cập đến việc áp dụng hoặc có thể áp dụng luật bình phương nghịch đảo cho những điểm hấp dẫn này. Lực hấp dẫn của Hooke cũng chưa phải là phổ quát, mặc dù nó đã tiếp cận tính phổ quát gần hơn so với các giả thuyết trước đó. Ông cũng không đưa ra bằng chứng hay minh chứng toán học kèm theo. Về hai khía cạnh sau, chính Hooke đã tuyên bố vào năm 1674: "Bây giờ tôi vẫn chưa kiểm chứng được một số mức độ [hấp dẫn] này bằng thực nghiệm"; và đối với toàn bộ đề xuất của ông: "Điều này tôi chỉ gợi ý hiện tại", "tôi có trong tay nhiều thứ khác mà tôi sẽ hoàn thành trước tiên, và do đó không thể tham dự nó một cách tốt đẹp" (tức là "khởi tố cuộc Điều tra này"). cho Newton, Hooke đã thông báo "giả định... của mình rằng lực hấp dẫn luôn luôn ở một tỷ lệ trùng lặp với Khoảng cách từ Trung tâm Reciprocall, và do đó, vận tốc sẽ có tỷ lệ tương ứng nhỏ hơn với lực hấp dẫn và do đó khi Kepler cho rằng Reciprocall tương ứng với khoảng cách. " (Suy luận về vận tốc không chính xác.)

Thư từ của Hooke với Newton trong thời gian 1679–1680 không chỉ đề cập đến giả thuyết bình phương nghịch đảo này cho sự suy giảm lực hút khi tăng khoảng cách, mà còn, trong bức thư mở đầu của Hooke gửi cho Newton, ngày 24 tháng 11 năm 1679, một cách tiếp cận "cộng gộp các chuyển động thiên thể của các hành tinh của một chuyển động thẳng theo phương tiếp tuyến & một chuyển động hấp dẫn đối với trọng tâm ".

Nghiên cứu và tuyên bố của Newton

Newton đối mặt với tuyên bố của Hooke vào tháng 5 năm 1686 về luật nghịch đảo bình phương, đã phủ nhận rằng Hooke được cho là tác giả của ý tưởng. Trong số các lý do, Newton nhớ lại rằng ý tưởng đã được thảo luận với Sir Christopher Wren trước bức thư năm 1679 của Hooke. Newton cũng chỉ ra và thừa nhận công trình trước đó của những người khác, bao gồm Bullialdus,

Newton còn bảo vệ công trình của mình bằng cách nói rằng lần đầu tiên ông nghe nói về tỷ lệ nghịch đảo bình phương từ Hooke, ông sẽ vẫn có một số quyền đối với nó khi đã chứng minh được tính chính xác của nó. Hooke, không có bằng chứng ủng hộ giả thiết, chỉ có thể đoán rằng luật bình phương nghịch đảo có giá trị xấp xỉ ở khoảng cách rất xa từ tâm. Theo Newton, trong khi 'Principia' vẫn còn ở giai đoạn trước khi xuất bản, có rất nhiều lý do tiên nghiệm để nghi ngờ tính chính xác của định luật nghịch đảo bình phương (đặc biệt là gần với một quả cầu thu hút) mà "không có Chứng minh (Newton) của tôi), mà ông Hooke vẫn còn là một người xa lạ, điều đó không thể tin được bởi một Triết gia sáng suốt là bất kỳ nơi nào chính xác. "

Nhận xét này đề cập đến những điều khác trong phát hiện của Newton, được hỗ trợ bởi chứng minh toán học, rằng nếu định luật nghịch đảo bình phương áp dụng cho các hạt nhỏ bé, thì ngay cả một khối lượng lớn đối xứng hình cầu cũng thu hút các khối lượng bên ngoài bề mặt của nó, thậm chí gần, chính xác như thể tất cả khối lượng riêng được tập trung tại trung tâm của nó. Vì vậy, Newton đã đưa ra một lời biện minh, nếu không thì còn thiếu sót, cho việc áp dụng định luật nghịch đảo bình phương cho các khối hành tinh hình cầu lớn như thể chúng là những hạt nhỏ. Ngoài ra, Newton đã xây dựng, trong Định luật 43–45 của Quyển 1 và các phần liên quan của Quyển 3, một phép thử nhạy cảm về độ chính xác của định luật nghịch đảo bình phương, trong đó ông chỉ ra rằng chỉ nơi định luật lực được tính vì bình phương nghịch đảo của khoảng cách sẽ giúp hướng định hướng của hình elip quỹ đạo của các hành tinh không đổi như chúng được quan sát thấy ngoài các tác động nhỏ do nhiễu loạn giữa các hành tinh.

Liên quan đến bằng chứng vẫn còn sót lại của lịch sử trước đó, các bản viết tay do Newton viết vào những năm 1660 cho thấy rằng chính Newton, vào năm 1669, đã đạt được bằng chứng rằng trong trường hợp chuyển động tròn của hành tinh, "nỗ lực rút lui" (sau này được gọi là lực ly tâm) có quan hệ nghịch đảo bình phương với khoảng cách từ tâm. Sau thư từ năm 1679–1680 với Hooke, Newton đã sử dụng ngôn ngữ của lực hướng nội hoặc hướng tâm. Theo học giả Newton J. Bruce Brackenridge, mặc dù đã có nhiều thay đổi trong ngôn ngữ và sự khác biệt về quan điểm, như giữa lực ly tâm hoặc lực hướng tâm, các tính toán và chứng minh thực tế vẫn giống nhau. Chúng cũng liên quan đến sự kết hợp của các phép dời hình tiếp tuyến và hướng tâm, mà Newton đã thực hiện vào những năm 1660. Bài học mà Hooke đưa ra cho Newton ở đây, mặc dù có ý nghĩa, nhưng là một trong những góc nhìn và không thay đổi phân tích. Nền tảng này cho thấy có cơ sở để Newton phủ nhận việc suy ra luật bình phương nghịch đảo từ Hooke.

Sự thừa nhận của Newton

Mặt khác, Newton đã chấp nhận và thừa nhận, trong tất cả các phiên bản của Principia, rằng Hooke (nhưng không phải độc quyền Hooke) đã tách biệt đánh giá cao những luật bình phương nghịch đảo trong hệ mặt trời. Newton đã thừa nhận Wren, Hooke và Halley về mối liên hệ này trong Định luật Scholium tới Proposition 4 trong Quyển 1. Newton cũng thừa nhận với Halley rằng thư từ của ông với Hooke vào năm 1679–80 đã khơi dậy mối quan tâm tiềm ẩn của ông đối với các vấn đề thiên văn, nhưng điều đó không có nghĩa là, theo Newton, rằng Hooke đã nói với Newton bất cứ điều gì mới hay nguyên bản: "Tuy nhiên, tôi vẫn chưa biết đến anh ấy cho bất kỳ ánh sáng nào vào công việc kinh doanh đó nhưng chỉ để chuyển hướng mà anh ấy đã cho tôi từ các nghiên cứu khác của tôi để suy nghĩ về những điều này và cho sự sai lầm trong cách viết của anh ấy như thể anh ấy đã tìm thấy chuyển động hình ellip, khiến tôi muốn thử nó... " Những vấn đề này dường như không được Newton học từ Hooke.

Tuy nhiên, một số tác giả đã nói nhiều hơn về những gì Newton đã thu được từ Hooke và một số khía cạnh vẫn còn gây tranh cãi.

Khoảng 30 năm sau cái chết của Newton vào năm 1727, Alexis Clairaut, một nhà thiên văn toán học nổi tiếng trong lĩnh vực nghiên cứu lực hấp dẫn, đã viết sau khi xem lại những gì Hooke đã công bố, rằng "Người ta không được nghĩ rằng ý tưởng này... của Hooke làm giảm giá trị của Newton vinh quang "; và rằng "ví dụ về Hooke" phục vụ "cho thấy khoảng cách giữa một sự thật được nhìn thấy và một sự thật được chứng minh".

Những nghi ngại của Newton

Tuy Newton đã có thể xây dựng định luật hấp dẫn của mình trong công trình đồ sộ của mình, thì ông lại vô cùng khó chịu với khái niệm "hành động ở khoảng cách xa" mà các phương trình của ông ngụ ý. Năm 1692, trong bức thư thứ ba gửi Bentley, ông viết: "Một vật thể này có thể tác động lên người khác ở khoảng cách xa thông qua chân không mà không cần sự trung gian của bất kỳ thứ gì khác, bằng cách đó hành động và lực lượng của chúng có thể được truyền tải từ nhau, là đối với tôi, một sự phi lý lớn đến nỗi, tôi tin rằng, không một người nào hiểu về triết học có khả năng tư duy thành thạo có thể tin được. "

Theo lời của ông, ông không bao giờ "đưa ra nguyên nhân của lực này". Trong tất cả các trường hợp khác, ông sử dụng hiện tượng chuyển động để giải thích nguồn gốc của các lực khác nhau tác dụng lên các vật thể, nhưng trong trường hợp trọng lực, ông không thể xác định bằng thực nghiệm chuyển động tạo ra lực hấp dẫn (mặc dù ông đã phát minh ra hai giả thuyết cơ học năm 1675 và 1717). Hơn nữa, ông thậm chí còn từ chối đưa ra một giả thuyết về nguyên nhân của lực này với lý do rằng làm như vậy là trái với khoa học đúng đắn. Ông than thở rằng "các triết gia cho đến nay đã cố gắng tìm kiếm nguồn gốc của lực hấp dẫn trong tự nhiên một cách vô ích", vì ông đã bị thuyết phục "bởi nhiều lý do" rằng có những "nguyên nhân cho đến nay vẫn chưa được biết" là cơ bản của tất cả "các hiện tượng của tự nhiên. ". Những hiện tượng cơ bản này vẫn đang được điều tra và mặc dù có rất nhiều giả thuyết, nhưng câu trả lời cuối cùng vẫn chưa được tìm ra. Và trong cuốn General Scholium năm 1713 của Newton trong ấn bản thứ hai của Principia: "Tôi vẫn chưa thể khám phá ra nguyên nhân của những đặc tính này của lực hấp dẫn từ các hiện tượng và tôi không có giả thuyết nào. . . . Lực hấp dẫn thực sự tồn tại là quá đủ và hoạt động theo các quy luật mà tôi đã giải thích, và nó phục vụ rất nhiều cho tất cả các chuyển động của các thiên thể. "

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Định luật vạn vật hấp dẫn của Newton** thường được phát biểu rằng mọi hạt đều hút mọi hạt khác trong vũ trụ với một lực tỷ lệ thuận với tích khối lượng của chúng
nhỏ|Lực hấp dẫn làm các [[hành tinh quay quanh Mặt Trời.]] Trong vật lý học, **lực hấp dẫn**, hay chính xác hơn là **tương tác hấp dẫn,** là một hiện tượng tự nhiên mà tất
phải|Bản đồ [[dị thường trọng lực của trọng trường Trái Đất từ vệ tinh GRACE.]] Trong vật lý học, **trường hấp dẫn** là một mô hình được sử dụng để giải thích sự ảnh hưởng
Hằng số hấp dẫn _G_ trong [[Định luật vạn vật hấp dẫn Newton.]] **Hằng số hấp dẫn** **G** phụ thuộc vào hệ đơn vị đo lường, được xác định lần đầu tiên bởi thí nghiệm
Cuốn sách nói về cuộc đời đầy biến cố và những công trình khoa học vĩ đại của Newton. Cuộc đời Newton trải qua nhiều thăng trầm, tuy nhiên những khó khăn chưa bao giờ
**_Philosophiæ Naturalis Principia Mathematica_** (tiếng Latinh nghĩa là _Các nguyên lý toán học của triết học tự nhiên_), thường gọi ngắn gọn là **_Principia_**, là tác phẩm gồm 3 tập sách do Sir Isaac Newton
thumb|Quỹ đạo gần đúng của ba vật thể giống hệt nhau nằm tại các đỉnh của một tam giác không cân với vận tốc ban đầu bằng không. [[Khối tâm, theo định luật bảo toàn
Thí nghiệm kiểm tra lý thuyết tương đối tổng quát đạt độ chính xác cao nhờ tàu thăm dò không gian [[Cassini–Huygens|Cassini (ảnh minh họa): Các tín hiệu radio được gửi đi giữa Trái Đất
**Phương trình trường Einstein** hay **phương trình Einstein** là một hệ gồm 10 phương trình trong thuyết tương đối rộng của Albert Einstein miêu tả tương tác cơ bản là hấp dẫn bằng kết quả
Hình 1: [[Sao chổi Shoemaker-Levy 9 năm 1994 sau khi bị phá vỡ bởi ảnh hưởng của các lực thủy triều từ Sao Mộc trong lần bay ngang qua trước đó vào năm 1992.]] nhỏ|Hình
**Sir Isaac Newton** (25 tháng 12 năm 1642 – 20 tháng 3 năm 1726 (lịch cũ)) là một nhà toán học, nhà vật lý, nhà thiên văn học, nhà thần học, và tác giả (ở thời
**Thí nghiệm Schiehallion** là một thí nghiệm ở thế kỷ 18 nhằm xác định khối lượng riêng trung bình của Trái Đất. Được tài trợ bởi Hội Hoàng gia Luân Đôn, thí nghiệm thực hiện
**Lý thuyết nhiễu loạn** là phương pháp toán học để tìm ra nghiệm gần đúng cho một bài toán, bằng cách xuất phát từ nghiệm chính xác của một bài toán tương tự đơn giản
## Sự hình thành thuyết tương đối tổng quát ### Những khảo sát ban đầu Albert Einstein sau này nói rằng, lý do cho sự phát triển thuyết tương đối tổng quát là do sự
**Hạt điểm** (còn được gọi là **hạt lý tưởng** hay **hạt tương tự điểm**) là sự lý tưởng hóa các hạt được sử dụng nhiều trong vật lý. Đặc điểm định nghĩa nó là nó
**Thăm dò trọng lực** (Gravimetry) là một phương pháp của _Địa vật lý_, thực hiện đo Trọng trường Trái Đất để xác định ra phần _dị thường trọng lực_, từ đó xác định phân bố
Trong địa vật lý, **dị thường trọng lực** (tiếng Anh: **gravity anomaly**) là sự khác biệt giữa gia tốc quan sát của trọng lực của hành tinh với giá trị trường bình thường, là giá
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
Diagram of torsion balance **Thí nghiệm Cavendish** là thí nghiệm đầu tiên đo đạc chính xác hằng số hấp dẫn, dựa trên nguyên lý đo lực hấp dẫn giữa hai vật mang khối lượng. ##
**Sao Thủy** (tiếng Anh: **Mercury**) hay **Thủy Tinh** (chữ Hán: 水星) là hành tinh nhỏ nhất và gần Mặt Trời nhất trong tám hành tinh thuộc hệ Mặt Trời, với chu kỳ quỹ đạo bằng
thumb|220x124px | right | Nhập khẩu của các quốc gia trên thế giới 2006 **Thương mại quốc tế** (Tiếng Anh: _international trade/international commerce_) là việc trao đổi hàng hóa và dịch vụ (hàng hóa hữu
**Tốc độ quỹ đạo** hay **tốc độ vũ trụ cấp I** là tốc độ một vật cần có để nó chuyển động theo quỹ đạo tròn gần bề mặt của một hành tinh hay thiên
**Phòng Thí nghiệm Cavendish** (_Cavendish Laboratory_) là tên gọi của Khoa Vật lý thuộc Đại học Cambridge (Vương quốc Liên hiệp Anh và Bắc Ireland). Cavendish là một khoa chuyên môn được thành lập từ
thumb|220x124px | right | Các quả cân với khối lượng khác nhau **Khối lượng** (Tiếng Anh: _mass_) là một đặc tính của vật thể vật lý và là thước đo khả năng chống lại gia
**Tương tác cơ bản** hay **lực cơ bản** là các loại lực của tự nhiên mà tất cả mọi lực, khi xét chi tiết, đều quy về các loại lực này. Trong cơ học cổ
**Henry Cavendish** (10 tháng 10 năm 1731 - 24 tháng 3 năm 1810) là một nhà vật lý, hóa học người Anh người đã phát hiện ra hiđrô, tính ra được một hằng số hấp
[[Dao động điều hòa đơn giản|Dao động của một vật thể treo trên lò xo]] **Chuyển động**, trong vật lý, là sự thay đổi vị trí trong không gian theo thời gian của **chất điểm**
Những viên gạch đầu tiên của bộ môn cơ học dường như được xây nền từ thời Hy Lạp cổ đại. Những kết quả nghiên cứu đầu tiên được ngày nay biết đến là của
**Quang học** là một lĩnh vực vật lý học, chuyên nghiên cứu về ánh sáng, cụ thể la nguồn gốc và cách truyền ánh sáng, cách thức nó biến đổi cùng vời những hiện tượng
_[[Nhà thiên văn học (Vermeer)|Nhà thiên văn_, họa phẩm của Johannes Vermeer, hiện vật bảo tàng Louvre, Paris]] **Thiên văn học** là một trong những môn khoa học ra đời sớm nhất trong lịch sử
**Cơ học thiên thể** là một nhánh của thiên văn học giải quyết các vấn đề chuyển động và hiệu ứng hấp dẫn của các thiên thể. Lĩnh vực này vận dụng các nguyên lý
Mô hình [[động cơ hơi nước của James Watt. Sự phát triển máy hơi nước khơi mào cho cuộc cách mạng công nghiệp Anh.]] **Cuộc cách mạng công nghiệp** hay còn gọi là **Cách mạng
**Lịch sử tư tưởng kinh tế** là lịch sử của các nhà tư tưởng và học thuyết kinh tế chính trị và kinh tế học từ thời cổ đại đến ngày nay. Lịch sử tư
**Roger Cotes** FRS (ngày 10 tháng 7 năm 1682 - 05 Tháng 6 năm 1716) là một nhà toán học của Anh, nổi tiếng nhờ việc hợp tác chặt chẽ với Isaac Newton trong việc
**Con lắc** theo định nghĩa chung nhất là một vật gắn vào một trục cố định mà nó có thể xoay (hay dao động) một cách tự do. Khi đưa con lắc dịch chuyển khỏi
**Urbain Jean Joseph Le Verrier** (, 11 tháng 3 năm 1811 - 23 tháng 9 năm 1877) là nhà thiên văn học người Pháp. Ông là một trong hai người phát hiện Hải Vương tinh
**Hàm số bậc hai** là hàm số có dạng ax^2+bx+c=y trong đó a,b,c là các hằng số và {\displaystyle (a\neq 0)} . Hệ số hoàn toàn có thể ở y. x và y lần lượt
nhỏ|Squanto hay Tisquantum dạy thực dân Plymouth trồng ngô với cá. **Khám phá**, **phát hiện** hay **phát minh** là việc tìm ra những gì tồn tại trong tự nhiên hoặc xã hội một cách khách
nhỏ|Các loại đường conic:
* [[Parabol
* Elíp và đường tròn
* Hyperbol]] Ellipse (_e_=1/2), parabol (_e_=1)hyperbol (_e_=2) với tiêu điểm _F_ và đường chuẩn. Bảng conic, _[[Cyclopaedia_, 1728]] Trong toán học, một
**Robert Hooke** (18 tháng 7 năm 1635 – 3 tháng 3 năm 1703) là một nhà khoa học người Anh. Robert Hooke sinh ngày 18 tháng 9 năm 1635 tại đảo Wight ở ngoài khơi
**Sao chổi** là thiên thể gần giống tiểu hành tinh nhưng không cấu tạo nhiều từ đất đá, mà chủ yếu là băng. Nó được miêu tả bởi một số chuyên gia bằng cụm từ
[[Phương trình nổi tiếng của Einstein dựng tại Berlin năm 2006.]] **Thuyết tương đối** miêu tả cấu trúc của không gian và thời gian trong một thực thể thống nhất là không thời gian cũng
Trong những luận triết đầu tiên của tâm lý học và siêu hình học, **_conatus_** (; trong tiếng Latin có nghĩa là _nỗ lực_, _cố gắng_, _thúc đẩy_, _thiên hướng_, _quyết tâm_, _phấn đấu_) là
**Stephen William Hawking** (8 tháng 1 năm 1942 – 14 tháng 3 năm 2018) là một nhà vật lý lý thuyết, nhà vũ trụ học và tác giả người Anh, từng là giám đốc nghiên
**Mặt Trời** hay **Thái Dương** (chữ Hán: 太陽), hay **Nhật** (chữ Hán: 日), là ngôi sao ở trung tâm Hệ Mặt Trời, chiếm khoảng 99,8% khối lượng của Hệ Mặt Trời. Trái Đất và các
**Đơn vị thiên văn** (ký hiệu: au) là một đơn vị đo chiều dài, xấp xỉ bằng khoảng cách từ Trái Đất đến Mặt Trời. Tuy nhiên, bởi vì khoảng cách này thay đổi khi
**Triết học toán học** là nhánh của triết học nghiên cứu các giả định, nền tảng và ý nghĩa của toán học, và các mục đích để đưa ra quan điểm về bản chất và