✨Đa thức Chebyshev

Đa thức Chebyshev

Đa thức Chebyshev, được đặt theo tên nhà toán học Nga Pafnuty Chebyshev, [1] là một dãy đa thức trực giao (tiếng Anh: orthogonal polynomials), và có liên quan đến công thức de Moivre (de Moivre's formula). Có thể xác định dãy đa thức này bằng công thức truy hồi, giống như số Fibonacci và số Lucas.

Có hai loại: đa thức Chebyshev loại I (ký hiệu là Tn) và đa thức Chebyshev loại II (ký hiệu là Un). Chữ T được dùng để ký hiệu vì trong tiếng Pháp tên của Chebyshev viết là Tchebycheff và trong tiếng Đức là Tschebyscheff. Chữ n ký hiệu cho bậc của đa thức.

Đa thức Chebyshev đóng vai trò quan trọng trong lý thuyết gần đúng. Các nghiệm của đa thức Chebyshev loại I, còn được gọi là các điểm Chebyshev (Chebyshev node), được dùng trong đa thức nội suy. Nhờ có nó, mà sai số do hiệu ứng Runge là nhỏ nhất.

Trong phương trình vi phân, đa thức Chebyshev loại I và loại II lần lượt là nghiệm của 2 phương trình vi phân Chebyshev sau: :(1-x^2)\,y'' - x\,y' + n^2\,y = 0 \,! và :(1-x^2)\,y'' - 3x\,y' + n(n+2)\,y = 0 \,!.

Định nghĩa

Định nghĩa theo công thức truy hồi

Đa thức Chebyshev loại I xác định theo công thức truy hồi:

: \begin{align} T_0(x) & = 1 \ T1(x) & = x \ T{n+1}(x) & = 2xTn(x) - T{n-1}(x). \end{align}

Công thức tổng quát quy ước của Tn

:\sum_{n=0}^{\infty}T_n(x) t^n = \frac{1-tx}{1-2tx+t^2}. \,!

Công thức mũ tổng quát

:\sum_{n=0}^{\infty}T_n(x) \frac{t^n}{n!} = {1 \over 2}\left(e^{(x-\sqrt{x^2 -1})t}+e^{(x+\sqrt{x^2 -1})t}\right). \,!

Đa thức Chebyshev loại II xác định theo công thức truy hồi:

: \begin{align} U_0(x) & = 1 \ U1(x) & = 2x \ U{n+1}(x) & = 2xUn(x) - U{n-1}(x). \end{align}

Một công thức tổng quát của Un

:\sum_{n=0}^{\infty}U_n(x) t^n = \frac{1}{1-2 t x+t^2}. \,!

Định nghĩa theo lượng giác

Đa thức Chebyshev loại I có thể định nghĩa bằng lượng giác:

:T_n(x)=\cos(n \arccos x)=\cosh(n\,\mathrm{arccosh}\,x) \,!

hoặc là:

:T_n(\cos(\vartheta))=\cos(n\vartheta) \,!

với n = 0, 1, 2, 3,....

Định nghĩa theo lượng giác của đa thức Chebyshev loại II:

: U_n(\cos(\vartheta)) = \frac{\sin((n+1)\vartheta)}{\sin\vartheta} \,!

công thức này khá giống với nhân Dirichlet (Dirichlet kernel) D_n(x) \,!:

: Dn(x) = \frac{\sin((2n+1)(x/2))}{\sin (x/2)} = U{2n}(\cos (x/2))\,!.

Dễ thấy, \cos(n\vartheta) là đa thức bậc n với \cos(\vartheta) là biến. Đồng thời, \cos(n\vartheta) cũng là phần thực trong công thức De Moivre (de Moivre's formula).

Từ công thức tổng quát bằng lượng giác ở trên, có thể dễ dàng chứng minh công thức truy hồi:

T_{n+1}(\cos(\vartheta)) = 2\cos(\vartheta)T_n(\cos(\vartheta)) - T_{n-1}(\cos(\vartheta)) = 2\cos(\vartheta) \cos(n \vartheta)) - \cos((n-1) \vartheta) = \cos((n+1)\vartheta) + \cos((n-1)\vartheta) - \cos((n-1)\vartheta) = \cos((n+1)\vartheta) \,\!

Sau đây, ta sẽ kiểm tra tính đúng đắn của định nghĩa đa thức Chebyshev theo lượng giác, với n = 0 và n = 1:

: T_0(\cos\vartheta) = \cos 0 \vartheta\ = 1 \,!

và:

:T_1(\cos\vartheta)=\cos\vartheta \,!

và với đa thức Chebyshev bậc 2 và 3:

: \cos(2 \vartheta)=2\cos\vartheta \cos\vartheta - \cos 0 \vartheta = 2\cos^{2}\,\vartheta - 1 \,!

: \cos(3 \vartheta)=2\cos\vartheta \cos(2 \vartheta) - \cos\vartheta = 4\cos^3\,\vartheta - 3\cos\vartheta \,!

tương tự cho các bậc cao hơn.

Một tính chất khá thú vị của đa thức Chebyshev:

:T_n(Tm(x)) = T{n\cdot m}(x).\,!

Mối liên hệ giữa đa thức Chebyshev và số phức: cho z = a + bi,

: \begin{align} z^n & = |z|^n \left(\cos \left(n\arccos \frac a\right) + i \sin \left(n\arccos \frac a\right)\right) \ & = |z|^n Tn\left(\frac a\right) + ib\ |z|^{n - 1}\ U{n-1}\left(\frac a\right). \end{align}

Định nghĩa theo phương trình Pell

Trong vành R[x] (tập hợp các đa thức với hệ số thực), đa thức Chebyshev được định nghĩa như nghiệm của phương trình Pell biến thể:

:Ti^2 - (x^2-1) U{i-1}^2 = 1 \,!.

Sử dụng kĩ thuật giải phương trình Pell có tên là "nghiệm sinh từ nghiệm nhỏ nhất", suy ra công thức tổng quát sau:

:Ti + U{i-1} \sqrt{x^2-1} = (x + \sqrt{x^2-1})^i. \,!

Tính chất

Công thức liên hệ (Transformation)

Các công thức liên hệ:

:Tn\left(1-2x^2\right)=(-1)^n T{2n}(x) (trans.1)

:Un\left(1-2x^2\right) x= (-1)^n U{2n+1}(x). (trans.2)

Chứng minh quy nạp công thức (trans.1):

Với n=0: :T0\left(1-2x^2\right)= 1 = (-1)^0 T{2.0}(x) và n = 1: :T1\left(1-2x^2\right)= 1-2x^2 = -1. T{2}(x), do đó công thức (trans.1) đúng với n=0 và n=1.

Giả sử (trans.1) đúng với n > 0, ta chứng minh nó đúng với n+1: : T_{n+1}(1-2x^2) : = 2(1-2x^2)Tn(1-2x^2) - T{n-1}(1-2x^2)

(theo giả thiết quy nạp ta thay Tn(1-2x^2) = (-1)^n T{2n}(x) và T{n-1}(1-2x^2) = (-1)^{n-1} T{2n-2}(x) ) : = 2(1-2x^2) (-1)^n T{2n}(x) - (-1)^{n-1} T{2n-2}(x) : = -4x^2 (-1)^n T{2n}(x) + (-1)^n. [T{2n}(x) + T{2n-2}(x)] + (-1)^n. T{2n}(x) : = -4x^2 (-1)^n T{2n}(x) + (-1)^n. 2x.T{2n-1}(x) + (-1)^n. T{2n}(x) : = -2x (-1)^n [2xT{2n}(x) - T{2n-1}(x)] + (-1)^n. T{2n}(x) : = -2x (-1)^n T{2n+1} (x) + (-1)^n. T{2n}(x) : = (-1)^{n+1} [2xT{2n+1} (x) - T{2n}(x)] : = (-1)^{n+1} T_{2n+2} (x) .

Như vậy (trans.1) đúng với n+1, theo quy tắc quy nạp, nó đúng với mọi n (điều phải chứng minh).

Chứng minh quy nạp tương tự cho (trans.2).

Nghiệm và cực trị

Một đa thức Cheybyshev bậc n (cả hai loại) có n nghiệm thực phân biệt, gọi là nghiệm Chebyshev, các nghiệm này đều nằm trên khoảng [−1,1]. Các nghiệm này đôi khi được gọi là các điểm nút Chebyshev (tiếng Anh: Chebyshev nodes) bởi vì chúng được dùng trong đa thức nội suy. Sử dụng định nghĩa lượng giác của đa thức Chebyshev, với

:\cos\left(\frac{\pi}{2}\,(2k+1)\right)=0

ta có thể chứng minh dễ dàng các nghiệm của Tn

: x_k = \cos\left(\frac{\pi}{2}\,\frac{2k-1}{n}\right),\quad k=1,\ldots,n.

Tương tự, các nghiệm của Un

: x_k = \cos\left(\frac{k}{n+1}\pi\right),\quad k=1,\ldots,n.

Giá trị cực đại của đa thức Chebyshev loại I trên khoảng bằng 1 và giá trị cực tiểu bằng -1. Đa thức Chebyshev chỉ có 2 giá trị tới hạn, giống như đặc tính của đa thức Shabat.

Cả hai loại đa thức Chebyshev đều đạt cực trị tại 2 điểm đầu mút:

:T_n(1) = 1\,

:T_n(-1) = (-1)^n\,

:U_n(1) = n + 1\,

:U_n(-1) = (n + 1)(-1)^n.\,

Đạo hàm và tích phân

Đạo hàm

Khi đạo hàm các đa thức Chebyshev trong dạng lượng giác, ta suy ra:

:\frac{d Tn}{d x} = n U{n - 1}\,

:\frac{d Un}{d x} = \frac{(n + 1)T{n + 1} - x U_n}{x^2 - 1}\,

:\frac{d^2 T_n}{d x^2} = n \frac{n Tn - x U{n - 1{x^2 - 1} = n \frac{(n + 1)T_n - U_n}{x^2 - 1}.\,

Điểm đặc biệt của \frac{d^2 T_n}{d x^2} (là giá trị mà khi thay vào làm cho nó có dạng 0/0 dạng không xác định(indeterminate form)) là x = 1 and x = -1. Tại đó \frac{d^2 T_n}{d x^2} bằng:

:\frac{d^2 Tn}{d x^2} \Bigg|{x = 1} !! = \frac{n^4 - n^2}{3},

:\frac{d^2 Tn}{d x^2} \Bigg|{x = -1} !! = (-1)^n \frac{n^4 - n^2}{3}.

Đạo hàm bậc hai của đa thức Chebyshev loại I:

:T''_n = n \frac{n Tn - x U{n - 1{x^2 - 1}

nếu thay trực tiếp x = ±1 vào thì nó có dạng không xác định \frac 0 {0} . Mặt khác, T__n(x) là một đa thức, do đó nó có giá trị thực xác định tại _x'' = ±1. Và ta có thể tính giá trị tại điểm x = 1 bằng giới hạn sau:

:T''n(1) = \lim{x \to 1} n \frac{n Tn - x U{n - 1{x^2 - 1}

Phân tích mẫu số:

:T''n(1) = \lim{x \to 1} n \frac{n Tn - x U{n - 1{(x + 1)(x - 1)} = \lim_{x \to 1} n \frac{\frac{n Tn - x U{n - 1{x - 1{x + 1}.

:T''n(1) = n \frac{\lim{x \to 1} \frac{n Tn - x U{n - 1{x - 1{\lim{x \to 1} (x + 1)} = \frac{n}{2} \lim{x \to 1} \frac{n Tn - x U{n - 1{x - 1} .

Ở đây mẫu số vẫn bằng 0, suy ra tử số nhất định bằng 0 (vì giới hạn tồn tại), cụ thể U_{n - 1}(1) = n T_n(1) = n. Đến đây ta áp dụng quy tắc 'Hôpital's:

:\begin{align} T''n(1) & = \frac{n}{2} \lim{x \to 1} \frac{\frac{d}{dx}(n Tn - x U{n - 1})}{\frac{d}{dx}(x - 1)} \ & = \frac{n}{2} \lim_{x \to 1} \frac{d}{dx}(n Tn - x U{n - 1}) \ & = \frac{n}{2} \lim{x \to 1} \left(n^2 U{n - 1} - U{n - 1} - x \frac{d}{dx}(U{n - 1})\right) \ & = \frac{n}{2} \left(n^2 U{n - 1}(1) - U{n - 1}(1) - \lim{x \to 1} x \frac{d}{dx}(U{n - 1})\right) \ & = \frac{n^4}{2} - \frac{n^2}{2} - \frac{1}{2} \lim{x \to 1} \frac{d}{dx}(n U{n - 1}) \ & = \frac{n^4}{2} - \frac{n^2}{2} - \frac{T''_n(1)}{2} \ T''_n(1) & = \frac{n^4 - n^2}{3}. \ \end{align}

Chứng minh cho trường hợp x = -1 tương tự bằng cách áp dụng T_n(-1) = (-1)^n.

Công thức tổng quát:

:\frac{d^p Tn}{d x^p} \Bigg|{x = \pm 1} !! = (\pm 1)^{n+p}\prod_{k=0}^{p-1}\frac{n^2-k^2}{2k+1}.

Kết quả này có ý nghĩa rất lớn trong tìm đáp số của giá trị đặc trưng.

Tích phân

Tích phân của Un:

:\int Un\, dx = \frac{T{n + 1{n + 1}\,

Tích phân của Tn:

:\int Tn\, dx = \frac{1}{2} \left(\frac{T{n + 1{n + 1} - \frac{T{n - 1{n - 1}\right) = \frac{n T{n + 1{n^2 - 1} - \frac{x T_n}{n - 1}.\,

Tính trực giao

Dãy Tn và dãy Un đều là dãy đa thức trực giao.

Cụ thể hơn, các đa thức loại I, xác định trên khoảng mở (−1,1)với mật độ (Tiếng Anh: The polynomials of the first kind are orthogonal with respect to the weight): \frac{1}{\sqrt{1-x^2, \,! thì:

:\int_{-1}^1 T_n(x)T_m(x)\,\frac{dx}{\sqrt{1-x^2= \begin{cases} 0 &: n\ne m \ \pi &: n=m=0\ \pi/2 &: n=m\ne 0 \end{cases}

Tính chất trên được chứng minh bằng cách thay x = \cos(\vartheta) và sử dụng đẳng thức : T_n(\cos(\vartheta)) = \cos(n\vartheta) .

Tương tự các đa thức loại II xác định trên khoảng đóng [−1,1] với mật độ (tiếng Anh: The polynomials of the second kind are orthogonal with respect to the weight):\sqrt{1-x^2} \,!

thì:

:\int_{-1}^1 U_n(x)U_m(x)\sqrt{1-x^2}\,dx = \begin{cases} 0 &: n\ne m, \ \pi/2 &: n=m. \end{cases}

(Chú ý giá trị lượng (weight) \sqrt{1-x^2} \,! là mật độ của phân bố nửa đường tròn Wigner (tiếng Anh: Wigner semicircle distribution).

Đa thức Tn cũng thỏa mãn tính trực giao rời rạc (iếng Anh: discete orthogonality):

: \sum_{k=0}^{N-1}{T_i(x_k)T_j(x_k)} = \begin{cases} 0 &: i\ne j \ N &: i=j=0 \ N/2 &: i=j\ne 0 \end{cases} \,!

với x_k là không điểm Gauss–Lobatto thứ N của T_N(x)

: x_k=\cos\left(\frac{\pi\left(k+\frac{1}{2}\right)}{N}\right).

Định chuẩn nhỏ nhất

Với số nguyên bất kì n ≥ 1, trong số các đa thức bậc n với hệ số bậc cao nhất bằng 1, đa thức sau:

:f(x) = \frac{1}{2^{n-1T_n(x)

giá trị tuyệt đối lớn nhất trên đoạn [−1, 1] nhỏ nhất.

Trong công thức trên sở dĩ nhân \frac{1}{2^{n-1 với T_n(x) là bởi vì hệ số bậc cao nhất của đa thức T_n(x) luôn bằng 2^{n-1}.

Giá trị lớn nhất đó bằng:

:\frac1{2^{n-1

và |ƒ(x)| đạt giá trị lớn nhất tại điểm:

: x = \cos \frac{k\pi}{n}\text{ for }0 \le k \le n.

Giả sử tồn tại đa thức w_n(x) bậc n với hệ số bậc cao nhất bằng 1, và giá trị tuyệt đối lớn nhất trên [−1, 1] nhỏ hơn \frac1{2^{n-1.

Xét đa thức sau:

:f_n(x) = \frac1{2^{n-1T_n(x) - w_n(x)

đa thức này có bậc nhỏ thua n.

Do giả thiết, tại mỗi điểm T_n(x) bằng \pm 1 , thì |w_n(x)| < |\frac1{2^{n-1T_n(x)|

:f_n(x) > 0 \text{ for } x = \cos \frac{2k\pi}{n} \text{ với } 0 \le 2k \le n

:f_n(x) < 0 \text{ for } x = \cos \frac{(2k + 1)\pi}{n} \text{ với } 0 \le 2k + 1 \le n.

Như vậy f_n(x) có nghiệm trên n khoảng (0, \frac{Pi}{n}), (\frac{Pi}{n},\frac{2Pi}{n}), \ldots (\frac{(n-1)Pi}{n},\frac{nPi}{n}). Nói cách khác, nó có ít nhất n nghiệm, điều này vô lý vì f_n(x) là đa thức bậc ≤(n-1).

Suy ra điều giả sử là sai. ta có điều phải chứng minh.

Mối liên hệ với các loại đa thức khác

Đa thức Chebyshev là trường hợp đặc biệt của Jacobi và đa thức Gegenbauer,

  • T_n(x)= \frac 1 P_n^{-\frac 1 2, -\frac 1 2}(x)= \frac n 2 C_n^0(x),
  • U_n(x)= \frac 1{2{n+\frac 1 2 \choose n P_n^{\frac 1 2, \frac 1 2}(x)= C_n^1(x).

Các tính chất khác

Đa thức Chebyshev là trường hợp đặc biệt của đa thức Gegenbauer, đến lượt mình đa thức Gegenbauer lại là trường hợp đặc biệt của Jacobi.

Với số nguyên n bất kì, Tn(x) và Un(x) đều là đa thức bậc n.

Nếu n chẵn thì Tn(x) và Un(x) là hàm chẵn, nghĩa là chỉ có các hệ số tương ứng với bậc chẵn là khác 0.

Ví dụ: : T_0(x) = 1 \, : T_2(x) = 2x^2 - 1 \, : T_4(x) = 8x^4 - 8x^2 + 1 \,.

: U_0(x) = 1 \, : U_2(x) = 4x^2 - 1 \, : U_4(x) = 16x^4 - 12x^2 + 1 \,.

Nếu n lẻ thì Tn(x) và Un(x) là hàm lẻ, nghĩa là chỉ có các hệ số tương ứng với bậc lẻ là khác 0.

Ví dụ: : T_1(x) = x \, : T_3(x) = 4x^3 - 3x \,

: U_1(x) = 2x \, : U_3(x) = 8x^3 - 4x \,.

Hệ số bậc cao nhất của Tn là if , và 1 tương ứng với bậc bằng 0.

Tn là trường hợp riêng của đường cong Lissajous curve với tần số tỉ lệ (tiếng Anh: frequency ratio) là n.

Một số dãy đa thức khác, ví dụ đa thức Lucas (Ln), đa thức Dickson(Dn), và đa thức Fibonacci(Fn) có liên hệ với đa thức Chebyshev Tn and Un.

Đa thức Chebyshev loại I thỏa mãn công thức truy hồi sau:

: T_j(x) Tk(x) = \frac{1}{2}\left(T{j+k}(x) + T_(x)\right),\quad\forall j,k\ge 0,\,

với mọi j và k.

Đối với đa thức Chebyshev loại II là: : U_j(x) Uk(x) = \left(U{j+k}(x) + U_(x)\right), \quad\forall j\ne 0, k\ne 0 .

Từ công thức:

: T_n(\cos\theta) = \cos(n \theta)

suy ra công thức sau:

: T_{2n+1}(\sin\theta) = (-1)^n \sin((2n+1)\theta) .

Ví dụ

Các đa thức Chebyshev loại I đầu tiên trong khoảng : Đồ thị của T0, T1, T2, T3, T4T5.

Các đa thức Chebyshev loại I đầu tiên:

: T_0(x) = 1 \,

: T_1(x) = x \,

: T_2(x) = 2x^2 - 1 \,

: T_3(x) = 4x^3 - 3x \,

: T_4(x) = 8x^4 - 8x^2 + 1 \,

: T_5(x) = 16x^5 - 20x^3 + 5x \,

: T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1 \,

: T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x \,

: T_8(x) = 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1 \,

: T_9(x) = 256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x. \,

[[Tập tin:Chebyshev Polynomials of the 2nd Kind (n=0-5, x=(-1,1)).svg|Các đa thức Chebyshev loại II đầu tiên trong khoảng −1 < x < 1: Đồ thị của U0, U1, U2, U3, U4U5. Không thể hiện trong ảnh, and .]]

Các đa thức Chebyshev loại II đầu tiên:

: U_0(x) = 1 \,

: U_1(x) = 2x \,

: U_2(x) = 4x^2 - 1 \,

: U_3(x) = 8x^3 - 4x \,

: U_4(x) = 16x^4 - 12x^2 + 1 \,

: U_5(x) = 32x^5 - 32x^3 + 6x \,

: U_6(x) = 64x^6 - 80x^4 + 24x^2 - 1 \,

: U_7(x) = 128x^7 - 192x^5 + 80x^3 - 8x \,

: U_8(x) = 256x^8 - 448 x^6 + 240 x^4 - 40 x^2 + 1 \,

: U_9(x) = 512x^9 - 1024 x^7 + 672 x^5 - 160 x^3 + 10 x. \,

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Đa thức Chebyshev**, được đặt theo tên nhà toán học Nga Pafnuty Chebyshev, [1] là một dãy đa thức trực giao (tiếng Anh: orthogonal polynomials), và có liên quan đến công thức de Moivre (de
phải|Bất đẳng thức Markov cho một chặn trên của độ đo của tập hợp các giá trị của x được đánh dấu đỏ, tại đó giá trị của một hàm không âm f(x)\ge\epsilon. Chặn trên
Trong toán học, **công thức de Moivre** (hay **định thức de Moivre, đẳng thức de Moivre**, tiếng Anh: _de Moivre's formula_) phát biểu rằng với mọi số thực **' và số nguyên **', đẳng thức
**Phương trình Pell** (Pell's equation) là bài toán tìm nghiệm nguyên Diophantine bậc hai với yêu cầu là giải một trong những phương trình nghiệm nguyên sau: :dạng chính tắc (còn gọi là _phương trình
liên_kết=https://en.wikipedia.org/wiki/File:Perpendicular-coloured.svg|phải|nhỏ|220x220px|Các đoạn thẳng AB và CD trực giao với nhau. Trong toán học, **trực giao** là tổng quát hóa của khái niệm tính vuông góc trong lĩnh vực đại số tuyến tính về các dạng
Trong lý thuyết xác suất, **chặn Chernoff**, đặt tên theo Herman Chernoff, cho một chặn trên giảm theo hàm mũ của đuôi phân phối của tổng nhiều biến ngẫu nhiên độc lập. Nó thường mạnh
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
right|thumb|350x350px|Hình 1(a): Biểu đồ Bode cho một [[bộ lọc thông cao bậc một (một cực); xấp xỉ tuyến tính được dán nhãn "Bode pole" (cực Bode); pha thay đổi từ 90° ở tần số thấp
Trong kỹ thuật, **hàm truyền** (còn được gọi là **hàm hệ thống** hoặc **hàm mạng**) của thành phần hệ thống điện tử hoặc điều khiển là một hàm toán học mô hình hóa lý thuyết
phải|Hình vẽ miêu tả [[hàm số sin(_x_) và các xấp xỉ Taylor của nó, tức là các đa thức Taylor bậc 1, 3, 5, 7, 9, 11
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
thumb|Một biểu ngữ năm 2013 tại Trường Trung học Nam Hải Trùng Khánh thông báo đây là địa điểm tổ chức kỳ thi cho Kỳ thi Tuyển sinh Đại học Toàn Quốc năm 2013 thumb|right|Phụ
**Thư viện phần mềm khoa học GNU** là một thư viện phần mềm viết bằng ngôn ngữ lập trình C cho các phương pháp tính toán số trong toán học ứng dụng và khoa học.
**Định đề Bertrand** là một định lý phát biểu rằng với bất kỳ số nguyên n > 3, luôn tồn tại ít nhất một số nguyên tố p sao cho :n < p < 2n
**Aleksandr Mikhailovich Lyapunov** (; 6 tháng 6 (cũ 25 tháng 5) năm 1857 – 3 tháng 11 năm 1918) là một nhà toán học, cơ học và vật lý người Nga. Họ của ông đôi
nhỏ|upright=1.35|Áp dụng định lý Pythagoras để tính khoảng cách Euclid trong mặt phẳng Trong toán học, **khoảng cách Euclid** () giữa hai điểm trong không gian Euclid là độ dài của đoạn thẳng nối hai