✨Bất đẳng thức cộng Chebyshev
Trong toán học, Bất đẳng thức cộng Chebyshev, được đặt theo tên nhà toán học Pafnuty Lvovich Chebyshev, được phát biểu rằng: Nếu cho
:
và
:
thì
:
Tương tự, nếu
:
và
:
thì
:
Chứng minh
Cách 1: Dùng bất đẳng thức hoán vị.
Giả sử ta có hai chuỗi số được cho như sau
:
và
:
Vậy thì, theo bất đẳng thức hoán vị, ta có
:
là giá trị lớn nhất có thể sắp xếp được từ hai chuỗi số trên.
:
:
:
::
:
Cộng vế theo vế, ta có:
:
chia cả hai vế cho , ta nhận được:
:
(điều phải chứng minh)
Cách 2: Phép biến đổi tương đương:
Bất đẳng thức cần chứng minh tương đương:
(luôn đúng do và ).Vậy ta có điều phải chứng minh.
👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong toán học, **Bất đẳng thức cộng Chebyshev**, được đặt theo tên nhà toán học Pafnuty Lvovich Chebyshev, được phát biểu rằng: Nếu cho : và :
phải|[[Miền giá trị (_feasible region_) của một bài toán quy hoạch tuyến tính được xác định bởi một tập các bất đẳng thức]] Trong toán học, một **bất đẳng thức** (tiếng Anh: Inequality) là một
**Pafnuty Lvovich Chebyshev** (, ) (sinh ngày 16 tháng 5 năm 1821 – mất ngày 8 tháng 12 năm 1894) là nhà toán học nổi tiếng người Nga và là người sáng tạo ra bất
**Đa thức Chebyshev**, được đặt theo tên nhà toán học Nga Pafnuty Chebyshev, [1] là một dãy đa thức trực giao (tiếng Anh: orthogonal polynomials), và có liên quan đến công thức de Moivre (de
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Trong toán học, **công thức de Moivre** (hay **định thức de Moivre, đẳng thức de Moivre**, tiếng Anh: _de Moivre's formula_) phát biểu rằng với mọi số thực **' và số nguyên **', đẳng thức
nhỏ|upright=1.35|Áp dụng định lý Pythagoras để tính khoảng cách Euclid trong mặt phẳng Trong toán học, **khoảng cách Euclid** () giữa hai điểm trong không gian Euclid là độ dài của đoạn thẳng nối hai
thumb|Một biểu ngữ năm 2013 tại Trường Trung học Nam Hải Trùng Khánh thông báo đây là địa điểm tổ chức kỳ thi cho Kỳ thi Tuyển sinh Đại học Toàn Quốc năm 2013 thumb|right|Phụ
thế=Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but the prime numbers cannot|nhỏ| Hợp số có thể được
**Aleksandr Mikhailovich Lyapunov** (; 6 tháng 6 (cũ 25 tháng 5) năm 1857 – 3 tháng 11 năm 1918) là một nhà toán học, cơ học và vật lý người Nga. Họ của ông đôi
right|thumb|350x350px|Hình 1(a): Biểu đồ Bode cho một [[bộ lọc thông cao bậc một (một cực); xấp xỉ tuyến tính được dán nhãn "Bode pole" (cực Bode); pha thay đổi từ 90° ở tần số thấp
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
liên_kết=https://en.wikipedia.org/wiki/File:Perpendicular-coloured.svg|phải|nhỏ|220x220px|Các đoạn thẳng AB và CD trực giao với nhau. Trong toán học, **trực giao** là tổng quát hóa của khái niệm tính vuông góc trong lĩnh vực đại số tuyến tính về các dạng
Trong kỹ thuật, **hàm truyền** (còn được gọi là **hàm hệ thống** hoặc **hàm mạng**) của thành phần hệ thống điện tử hoặc điều khiển là một hàm toán học mô hình hóa lý thuyết
phải|Hình vẽ miêu tả [[hàm số sin(_x_) và các xấp xỉ Taylor của nó, tức là các đa thức Taylor bậc 1, 3, 5, 7, 9, 11 và