✨Mêtric Schwarzschild

Mêtric Schwarzschild

Trong thuyết tương đối rộng của Albert Einstein, mêtric Schwarzschild (hay nghiệm Schwarzschild, chân không Schwarzschild), mang tên của Karl Schwarzschild, miêu tả trường hấp dẫn bên ngoài khối vật chất không quay, trung hòa điện, như các sao (không quay), hành tinh, sao neutron hay lỗ đen. Nó cũng là mêtric miêu tả xấp xỉ trường hấp dẫn của vật thể quay khá chậm như Trái Đất hay Mặt Trời. Mêtric Schwarzschild là nghiệm của phương trình chân không Einstein với hằng số vũ trụ học có giá trị bằng 0.

Theo định lý Birkhoff, nghiệm Schwarzschild là nghiệm có tính đối xứng cầu tổng quát nhất, của phương trình trường Einstein trong chân không (nơi không có vật chất). Lỗ đen Schwarzschild hay lỗ đen tĩnh là một loại lỗ đen không có điện tích và mômen động lượng. Lỗ đen Schwarzschild miêu tả bởi mêtric Schwarzschild, và nó không khác một lỗ đen Schwarzschild khác ngoại trừ khối lượng giữa chúng.

Lỗ đen Schwarzschild đặc trưng bởi bề mặt toán học dạng cầu bao quanh nó, gọi là chân trời sự kiện, xác định tại bán kính Schwarzschild, mà theo định nghĩa là bán kính của lỗ đen. Bất kỳ vật thể không quay và trung hòa điện nhỏ hơn bán kính Schwarzschild có khả năng hình thành lên lỗ đen. Nghiệm của phương trình trường Einstein áp dụng cho mọi khối lượng M, do vậy về nguyên lý (theo thuyết tương đối tổng quát) tồn tại lỗ đen Schwarzschild với khối lượng bất kỳ nếu điều kiện cho phép chúng hình thành.

Bốn nghiệm chính xác miêu tả lỗ đen của phương trình chân không Einstein được tổng hợp lại bảng sau:

với Q là điện tích của vật thể và J là mômen động lượng quay của nó.

Mêtric Schwarzchild

Nghiệm Schwarzchild: miêu tả không thời gian tĩnh có tính đối xứng cầu, bên ngoài bán kính Schwarzchild. Nó là nghiệm của phương trình chân không với tenxơ ứng suất–năng lượng T_{\mu \nu}{} = 0

Trong hệ tọa độ cầu x^\mu \rightarrow (ct, r, \theta, \phi) \, sử dụng dấu mêtric (+,-,-,-), mêtric Schwarzchild là : ds^2 = c^2 {d \tau}^{2} = \left(1 - \frac{r_s}{r} \right) c^2 dt^2 - \left(1-\frac{r_s}{r}\right)^{-1} dr^2 - r^2 \left(d\theta^2 + \sin^2\theta \, d\varphi^2\right),

:với #_τ_ là thời gian riêng (đo bởi đồng hồ gắn cùng với hạt thử di chuyển trên tuyến thế giới kiểu thời gian) #_t_ là tọa độ thời gian (đo bởi một đồng hồ đứng yên nằm rất xa so với nguồn hấp dẫn), #_r_ là tọa độ xuyên tâm (đo bằng chu vi đường tròn chia cho 2π, các đường tròn nằm trên mặt cầu có tâm tại nguồn hấp dẫn), #_θ_ là độ dư vĩ (tính từ cực bắc, đơn vị radian), #_φ_ là kinh độ (radian), và #_rs_ là bán kính Schwarzschild của nguồn hấp dẫn, nó là hệ số tỷ lệ liên hệ với khối lượng _M_ của "nguồn hấp dẫn không có điện tích và không quay" và _rs_ = 2_GM_/_c_2.

hay dạng ma trận của mêtric ::g_{\mu\nu} = \begin{bmatrix} \left(1-\frac{2GM}{c^2 r}\right) & 0 & 0 & 0\ 0 & - \left(1-\frac{2GM}{c^2 r}\right)^{-1} & 0 & 0 \ 0 & 0 & - r^2 & 0 \ 0 & 0 & 0 & - r^2\sin^2\theta \end{bmatrix}. \

Khi hạt thử nằm rất xa nguồn hấp dẫn r \to \infty hoặc khi không có nguồn hấp dẫn M = 0 thì mêtric Schwarzschild g{\mu\nu} trở thành mêtric Minkowski \eta{\mu\nu} sau khi chuyển từ tọa độ cầu sang tọa độ (ct, x, y, z) trong thuyết tương đối hẹp.

Tỷ số rs/r là rất nhỏ, đối với Mặt Trời có bán kính Schwarzschild xấp xỉ 3 km, trong khi nó có bán kính gần 700.000 km. Tỷ số này sẽ tương đối lớn đối với lỗ đen và sao neutron.

Kì dị hấp dẫn và lỗ đen

Tại r = rs thì mêtric trở lên kỳ dị (còn gọi là chân trời sự kiện), thực ra đây là kỳ dị do chúng ta sử dụng hệ tọa độ cầu chứ không hẳn là kỳ dị thực. Khi lựa chọn hệ tọa độ phù hợp, kỳ dị này biến mất và chỉ có r = 0 mới là điểm kỳ dị vật lý.

Kì dị tại r = rs chia tọa độ cầu Schwarzschild thành hai miền không liên thông với nhau. Miền ngoài với r > rs liên hệ với trường hấp dẫn của sao hay hành tinh. Miền trong 0 < r < rs, mà chứa kỳ dị r = 0, tách biệt hoàn toàn với miền ngoài bởi kì dị tại r = rs. Hệ tọa độ Schwarzschild không thể hiện ý nghĩa vật lý của sự kết nối giữa hai vùng này, mà có thể coi chúng là hai nghiệm riêng biệt. Do vậy kì dị tại r = rs là một ảo ảnh hay kì dị tọa độ. Như hàm ý của tên gọi, kì dị này xuất hiện do sự lựa chọn các điều kiện hệ tọa độ. Khi thực hiện chuyển sang hệ tọa độ khác (ví dụ tọa độ Lemaitre, tọa độ Eddington-Finkelstein, tọa độ Kruskal-Szekeres, tọa độ Novikov, hay tọa độ Gullstrand–Painlevé) mêtric Schwarzschild trở lên liên tục tại r = rs và cho phép mở rộng miêu tả không thời gian tại r nhỏ hơn rs. Và cho phép liên hệ giữa miền ngoài và miền trong.

Nhưng trường hợp r = 0 lại hoàn toàn khác. Nếu yêu cầu mêtric Schwarzschild thỏa mãn cho mọi r thì sẽ gặp trở ngại tại kì dị vật lý này, hay còn gọi là điểm kì dị hấp dẫn. Để thấy được đây là kì dị vật lý, cần chỉ ra những đại lượng độc lập với cách chọn hệ tọa độ hay gọi là bất biến tọa độ. Một trong những đại lượng quan trọng là bất biến Kretschmann, bằng bình phương của tenxơ độ cong Riemann: :R^{\alpha\beta\gamma\delta} R_{\alpha\beta\gamma\delta} = \frac{12 {r_s}^2}{r^6} = \frac{48 G^2 M^2}{c^4 r^6} \,.

Tại r = 0 đại lượng này có giá trị vô hạn hay ám chỉ tồn tại một kì dị hấp dẫn. Và không thời gian miêu tả bởi mêtric không còn xác định tốt nữa. Trong một thời gian dài các nhà vật lý nghĩ rằng nó không phải là đại lượng mang ý nghĩa vật lý. Sau đó, những hiểu biết sâu sắc hơn về thuyết tương đối tổng quát giúp họ nhận ra rằng những vùng kì dị hấp dẫn là bản chất không tránh khỏi của lý thuyết và không phải là trường hợp đặc biệt. Những mêtric như vậy miêu tả những đối tượng trong vũ trụ như lỗ đen hay các sao đặc.

Nghiệm Schwarzschild, đúng cho mọi r > 0, còn gọi là lỗ đen Schwarzschild. Nó là nghiệm chính xác của phương trình trường Einstein, mặc dù nó có một số tính chất kỳ lạ. Đối với r < rs tọa độ xuyên tâm Schwarzschild r trở thành kiểu thời gian và tọa độ thời gian t trở thành kiểu không gian. Một cung với r là hằng số sẽ không còn là tuyến thế giới của một hạt hay quan sát viên, ngay cả khi có một lực tác động lên nó nhằm giữ nó tại đó; điều này xảy ra bởi vì không thời gian trở lên rất cong khiến chiều hướng của nguyên nhân và kết quả (nón ánh sáng tương lai của hạt) hướng về vùng kì dị. Bề mặt r = rs được gọi là chân trời sự kiện của lỗ đen. Khi photon băng qua bề mặt này thì nó không thể thoát ngược trở ra được. Quá trình suy sụp hấp dẫn của các thiên thể trong vũ trụ khi bán kính R sau giai đoạn này nhỏ hơn bán kính Schwarzschild biến chúng trở thành lỗ đen.

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Trong thuyết tương đối rộng của Albert Einstein, **mêtric Schwarzschild** (hay **nghiệm Schwarzschild**, **chân không Schwarzschild**), mang tên của Karl Schwarzschild, miêu tả trường hấp dẫn bên ngoài khối vật chất không quay, trung hòa
Mêtric Schwarzschild miêu tả không-thời gian dưới ảnh hưởng của một khối vật chất đối xứng cầu có khối lượng lớn và không quay. ## Quy ước và ký hiệu Trong bài này ta làm
**Karl Schwarzschild** (9 tháng 10 năm 1873 – 11 tháng 5 năm 1916) là một nhà vật lý học người Đức. Ông là bố của nhà vật lý thiên văn Martin Schwarzschild. Ông được biết
**Mêtric Kerr** (hay **chân không Kerr**, **nghiệm Kerr**) miêu tả hình học của không thời gian trong chân không xung quanh một lỗ đen quay đối xứng trục trung hòa điện với chân trời sự
nhỏ|[[Karl Schwarzschild]] **Bán kính Schwarzschild** hay **bán kính hấp dẫn** _R_S, của một vật thể là bán kính giới hạn mà nếu kích thước của vật thể bằng với giá trị này thì nó sẽ
[[Đĩa bồi tụ bao quanh lỗ đen siêu khối lượng ở trung tâm của thiên hà elip khổng lồ Messier 87 trong chòm sao Xử Nữ. Khối lượng của nó khoảng 7 tỉ lần khối
Mô phỏng dựa theo thuyết tương đối rộng về chuyển động quỹ đạo xoáy tròn và hợp nhất của hai hố đen tương tự với sự kiện [[GW150914. Minh họa hai mặt cầu đen tương
Trong vật lý, **không–thời gian** là một mô hình toán học kết hợp không gian ba chiều và 1 chiều thời gian để trở thành một không gian bốn chiều. Sơ đồ không–thời gian có
**Các** **định lý về điểm kỳ dị Penrose–Hawking** (sau Roger Penrose và Stephen Hawking) là một tập hợp các kết quả trong thuyết tương đối rộng cố gắng trả lời câu hỏi khi nào trọng
**Howard Percy "Bob" Robertson** (27 tháng 1 năm 1903 – 26 tháng 8 năm 1961) là một nhà toán học và nhà vật lý học người Mỹ nổi tiếng với những đóng góp liên quan
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
nhỏ|Quá trình Penrose trong vùng lân cận của một ngôi sao rất nhỏ đang quay. Một hạt phân rã thành 2 phần trong vùng sinh công, với bán kính r (nét đứt). Hạt số 2
Một lỗ đen quay là một lỗ đen sở hữu mô men động lượng, hoặc có thể hiểu đó là hố den quay quah trục đối xứng của nó. Tất cả các thiên thể -
Trong vật lý, **bài toán Kepler trong thuyết tương đối rộng** là bài toán xác định chuyển động của hai vật nặng tuân theo các phương trình hấp dẫn của thuyết tương đối rộng, cũng
**Phương trình trường Einstein** hay **phương trình Einstein** là một hệ gồm 10 phương trình trong thuyết tương đối rộng của Albert Einstein miêu tả tương tác cơ bản là hấp dẫn bằng kết quả
Thí nghiệm kiểm tra lý thuyết tương đối tổng quát đạt độ chính xác cao nhờ tàu thăm dò không gian [[Cassini–Huygens|Cassini (ảnh minh họa): Các tín hiệu radio được gửi đi giữa Trái Đất
nhỏ|Sự phân rã proton thông qua một lỗ đen ảo. Trong hấp dẫn lượng tử, một lỗ đen ảo là một lỗ đen vi mô giả định tồn tại tạm thời do sự biến động