✨Định lý Đào (conic)

Định lý Đào (conic)

thumb|Trường hợp điểm D nằm trên đường thẳng đối cực của P Định lý Đào (conic) là một định lý trong lĩnh vực hình học phẳng, nói về sự tồn tại của một đường thẳng trong cấu trúc hình học liên quan đến đường conic và cực và đường thẳng đối cực. Định lý Đào có thể suy biến thành một trong nhiều định lý nổi tiếng trước đó gồm: đường thẳng Droz-Farny, định lý Goormaghtigh, định lý Đào (hẹp), định lý Zaslavsky, định lý Colling, định lý Carnot, vấn đề Bliss, định lý Nixon

  • Trường hợp điểm D nằm trên đường conic được Đào Thanh Oai phát biểu chứng minh vào tháng 6 năm 2013 trên Cut-The-Knot và diễn đàn toán học phổ thông "Art of Problem Solving". Bài báo của Nguyễn Ngọc Giang cũng đề cập đến trường hợp này nhưng không chứng minh. Trong trường hợp này định lý cũng được giáo sư Geoff Smith đăng trên tạp chí the Mathematical Gazette và ông đã xác nhận sự phát hiện lặp lại của mình với Đào Thanh Oai. Trường hợp đường conic là đường tròn phần đảo được nêu trước đó rất lâu bởi Paul Aubert và Joseph Neuberg.
👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
thumb|Trường hợp điểm D nằm trên đường thẳng đối cực của P **Định lý Đào (conic)** là một định lý trong lĩnh vực hình học phẳng, nói về sự tồn tại của một đường thẳng
thumb|Định lý Đào về sáu tâm đường tròn **Định lý Đào về sáu tâm đường tròn** còn có tên đầy đủ là **định lý Đào về sáu tâm đường tròn kết hợp với một lục
thumb|Định lý tám đường tròn **Định lý tám đường tròn** (hay còn gọi là **Định lý Đào về tám đường tròn**) là một định lý liên quan đến tám đường tròn được phát biểu như
thumb|Đường thẳng Simson _LN_ (đỏ) của tam giác _ABC_. Trong hình học, định lý về **đường thẳng Simson** được phát biểu như sau: Cho tam giác ABC và một điểm P nằm trên đường tròn
Hồng Kông bao gồm bán đảo Cửu Long và 263 hòn đảo trên 500 m², đảo lớn nhất là đảo Đại Tự Sơn và lớn thứ hai là đảo Hồng Kông. Áp Lợi Châu là
thumb|Cực và đối cực khi đường conic là đường tròn Trong lĩnh vực hình học phẳng, **Cực và đối cực** là các khái niệm lần lượt nói về điểm và đường thẳng có các tính
right|thumb|Đường thẳng qua các điểm A_0,B_0,C_0 là đường thẳng Droz-Farny Trong hình học phẳng, **đường thẳng Droz-Farny ** nói về một tính chất của hai đường thẳng vuông góc cắt nhau tại trực tâm của
**Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīsābūrī** (ngày 18 tháng 5 năm 1048 – ngày 4 tháng 12 năm 1131), thông thường được biết đến với tên gọi **Omar Khayyám** (),, là một nhà
phải|nhỏ|210x210px|Đồ thị của một hàm số bậc ba với 3 [[Nghiệm số|nghiệm số thực (tại đó đường đồ thị cắt trục hoành—thỏa mãn ). Hình vẽ cho thấy hai điểm cực trị. Phương trình của
**Galileo di Vincenzo Bonaiuti de' Galilei** (; phiên âm tiếng Việt: **Ga-li-lê**; sinh ngày 15 tháng 2 năm 1564 – mất ngày 8 tháng 1 năm 1642), cũng thường được gọi ngắn gọn là **Galileo**, là
thumb|Hình mình họa cho chứng minh của Euclid về định lý Pythagoras. **Toán học Hy Lạp** là nền toán học được viết bằng tiếng Hy Lạp, phát triển từ thế kỷ 7 TCN đến thế
phải|Một parabol phải|Parabol như một giao tuyến giữa một mặt nón và mặt phẳng song song với đường sinh của nó. nhỏ|phải|Một hình miêu tả tính chất đối xứng, đường chuẩn (xanh lá cây), và
thumb|Hình 1. Đường đi của các chùm tia sáng qua [[giao thoa kế Michelson. Hai chùm tia sáng xuất phát từ cùng một nguồn sáng, đi theo hai đường khác nhau, rồi gặp nhau tại
nhỏ|_Cuốn sách của các phép lạ_ (Augsburg, thế kỷ 16). Sao chổi đã được con người quan sát trong hàng nghìn năm, nhưng chỉ trong vài thế kỷ qua chúng mới được nghiên cứu như