✨Siêu tân tinh

Siêu tân tinh

Siêu tân tinh (chữ Hán: 超新星) hay sao siêu mới (; viết tắt là SN hay SNe) là một sự kiện thiên văn học biến đổi tức thời xảy ra trong giai đoạn cuối của quá trình tiến hóa sao ở các sao khối lượng lớn, mà một vụ nổ khổng lồ cuối cùng đánh dấu sự hủy diệt của sao. Sự kiện bất thình lình này tạo ra một ngôi sao sáng "mới", trước khi dần phai mờ trong vòng vài tuần đến vài tháng. [[Siêu tân tinh loại Ia SN 1994D (ở phía dưới bên trái) có độ sáng hơn cả thiên hà chứa nó, NGC 4526.]] nhỏ| Siêu tân tinh loại Ib Supernova 2008D trong thiên hà [[NGC 2770, được chiếu bằng tia X (trái) và ánh sáng khả kiến (phải). Hình ảnh NASA]]

Siêu tân tinh là sự kiện mãnh liệt hơn sự kiện sao mới (nova). Trong tiếng Latinh, nova có nghĩa là "mới", mà trong thiên văn học đề cập đến sự xuất hiện tạm thời của một sao sáng mới. Tiền tố "super-siêu" phân biệt siêu tân tinh từ tân tinh thông thường, có độ sáng nhỏ hơn rất nhiều. Thuật ngữ supernova do Walter Baade và Fritz Zwicky đặt ra từ năm 1931. vào môi trường liên sao xung quanh, đồng thời quét lên một lớp vỏ bao gồm bụi và khí đang mở rộng, hay chính là tàn tích siêu tân tinh như được quan sát. Siêu tân tinh tạo ra, tổng hợp và giải phóng lượng lớn các nguyên tố hóa học hình thành bởi các phản ứng tổng hợp hạt nhân. Nhờ vậy nó đóng vai trò quan trọng cho quá trình làm giàu môi trường liên sao bằng các nguyên tố có nguyên tử khối nặng hơn heli. Ngoài ra, sóng xung kích lan tỏa từ vụ nổ có thể kích hoạt sự hình thành các sao mới. Tàn tích siêu tân tinh được xem là một trong những nơi phát ra đa số các tia vũ trụ bắt nguồn từ Ngân Hà, nhưng chỉ mới tìm thấy một vài dấu hiệu chứng tỏ tia vũ trụ có liên quan trực tiếp đến tàn tích siêu tân tinh. Vụ nổ siêu tân tinh cũng là một nguồn phát sóng hấp dẫn tiềm năng để nghiên cứu trong tương lai.

Các nghiên cứu lý thuyết chỉ ra rằng hầu hết siêu tân tinh được khởi phát từ một trong hai cơ chế cơ bản: việc phản ứng tổng hợp hạt nhân bất thình lình hoạt động trở lại ở một sao thoái hóa hoặc lõi của ngôi sao khối lượng lớn bất ngờ suy sụp hấp dẫn. Ở cơ chế đầu tiên, một sao lùn trắng thoái hóa tích tụ vật chất từ một sao đồng hành, hoặc là thông qua sự bồi tụ vật chất hoặc sáp nhập với sao lùn trắng đồng hành, đến một lúc quá trình này khiến cho nhiệt độ lõi sao tăng lên tới giới hạn kích hoạt phản ứng tổng hợp hạt nhân mất kiểm soát, làm cho phá hủy hoàn toàn ngôi sao. Ở trường hợp thứ hai, dưới tác động của lực hấp dẫn từ chính sao có khối lượng lớn, vật chất sụp đổ về lõi sao, kết hợp với bức xạ neutrino và chuyển động hỗn loạn từ vùng lõi, dẫn đến giải phóng thế năng hấp dẫn cùng sóng xung kích mở rộng ngược ra ngoài, trở thành vụ nổ siêu tân tinh. Trong khi thực tế các siêu tân tinh xảy ra có mức độ phức tạp hơn so với hai mô hình lý thuyết này, cơ chế giải thích vụ nổ đã được thiết lập vững chắc và được phần lớn các nhà thiên văn học chấp thuận.

Do hệ quả của những sự kiện này là rất rộng lớn, hiện nay các nhà thiên văn vật lý tập trung nghiên cứu sâu vào siêu tân tinh, từ phạm vi tiến hóa sao cho đến tiến hóa thiên hà và là một lĩnh vực nghiên cứu đặc biệt quan trọng.

Lịch sử quan sát

Ghi chép miêu tả sớm nhất trong lịch sử về siêu tân tinh, đó là SN 185, được các nhà thiên văn Trung Hoa cổ đại quan sát vào năm 185 CN. Siêu tân tinh sáng nhất từng được ghi chép là SN 1006, nó xảy ra vào năm 1006 CN và được miêu tả chi tiết bởi các nhà thiên văn Trung Hoa và Hồi giáo cổ đại. Siêu tân tinh SN 1054 được theo dõi rộng rãi khắp nơi chính là vụ nổ tạo nên tinh vân Con Cua như quan sát ngày nay. Hai siêu tân tinh SN 1572 và SN 1604, là các sự kiện gần đây nhất xảy ra trong Ngân Hà được quan sát bằng mắt thường. Chúng đã có những tác động tích cực đến sự phát triển của thiên văn học ở châu Âu, bởi vì chúng được dùng để phản bác lại ý tưởng của trường phái Aristotle về vũ trụ (nằm bên ngoài Mặt Trăng và các hành tinh) là tĩnh tại và không thay đổi. Johannes Kepler bắt đầu quan sát SN 1604 tại lúc nó đạt đỉnh điểm vào ngày 17 tháng 10 năm 1604 và ông tiếp tục theo dõi quá trình độ sáng giảm dần cho đến khi nó biến mất khỏi bầu trời một năm sau đó. Đây là siêu tân tinh thứ hai được quan sát trong một thế hệ (sau siêu tân tinh SN 1572 thuộc chòm sao Cassiopeia quan sát bởi Tycho Brahe).

Có một số chứng cứ về siêu tân tinh trẻ nhất trong Ngân Hà, G1.9+0.3, xảy ra vào cuối thế kỷ 19, được coi là muộn hơn đáng kể so với siêu tân tinh tạo ra tinh vân Cassiopeia A trong khoảng năm 1680. Thế giới đã không phát hiện được hai vụ nổ siêu tân tinh này. Ở trường hợp của G1.9+0.3, gần như toàn bộ bức xạ điện từ phát ra bị chặn lại (high extinction) do lớp bụi và khí nằm dọc theo mặt phẳng thiên hà khiến các nhà thiên văn học không để ý tới sự kiện đang xảy ra. Đối với tinh vân Cassiopeia A, hiệu ứng ánh sáng vọng (light echo) đã được đo ở bước sóng hồng ngoại cho thấy đây là siêu tân tinh loại IIb. Mặc dù vị trí của nó không nằm trong vùng bị che chắn nhiều, nhưng không hề có một ghi chép lịch sử nào về vụ nổ này.

Trước khi có sự phát triển của kính thiên văn, chỉ có 5 siêu tân tinh được quan sát trong thiên niên kỷ vừa qua. So với lịch sử tiến hóa của một sao, sự xuất hiện của siêu tân tinh trong thiên hà là rất ngắn, trung bình kéo dài một vài tháng, do vậy số sự kiện như thế mà một người trong đời có cơ hội quan sát là gần bằng một. Chỉ có một phần nhỏ trong số 100 tỷ sao trong một thiên hà điển hình có khả năng trở thành siêu tân tinh, vì trong một khoảng thời gian cho trước, hoặc là ngôi sao phải có khối lượng đủ lớn đang ở giai đoạn cuối hoặc trong hệ sao đôi phải có một sao lùn trắng.

Tuy vậy, việc quan sát và khám phá siêu tân tinh bên ngoài Ngân Hà đã trở lên thường xuyên hơn; bắt đầu bằng SN 1885A thuộc thiên hà Tiên Nữ. Ngày nay, mỗi năm các nhà thiên văn nghiệp dư và chuyên nghiệp tìm thấy khoảng vài trăm sự kiện, một số đang trong trạng thái gần sáng cực đại hoặc được phát hiện lại từ những tấm ảnh hay bản chụp thiên văn học cũ. Từ năm 1941, dựa trên quang phổ của 14 sự kiện, nhà thiên văn học người Mỹ Rudolph Minkowski nhận thấy có ít nhất hai nhóm siêu tân tinh. Sau đó Fritz Zwicky và nhiều người khác đã mở rộng, phát triển sơ đồ phân loại siêu tân tinh. Trong thập niên 1960, các nhà thiên văn phát hiện thấy có mối liên hệ giữa cường độ sáng cực đại của một số siêu tân tinh loại I với dịch chuyển đỏ và nhận ra sự hữu ích của loại siêu tân tinh này như những ngọn nến chuẩn trong việc đo khoảng cách trong vũ trụ. Gần đây, các siêu tân tinh loại Ia ở xa nhất được quan sát mờ hơn so với dự định. Kết quả bất ngờ này khiến các nhà thiên văn vật lý đi đến kết luận là sự giãn nở của Vũ trụ đang gia tăng. Nhiều kỹ thuật được phát triển để tái dựng lại các sự kiện siêu tân tinh mà đã không được quan sát trước đó. Chẳng hạn, thời điểm xảy ra siêu tân tinh Cassiopeia A đã được xác định dựa trên hiệu ứng ánh sáng phản xạ từ khí và bụi tinh vân, hay độ tuổi của tàn tích siêu tân tinh RX J0852.0-4622 được ước tính từ nhiệt độ đo được trong khi chứng cứ về tàn tích này được củng cố từ vạch bức xạ tia gamma phát ra từ sự phân rã phóng xạ của titanium-44.

Siêu tân tinh sáng nhất từng được quan sát là sự kiện ASASSN-15lh. Vụ nổ này được phát hiện vào tháng 6 năm 2015 và cường độ sáng lớn nhất đạt 570 tỷ L{\odot}, bằng 2 lần độ sáng của đa số các siêu tân tinh từng được quan sát. Tuy nhiên, người ta vẫn chưa hiểu rõ bản chất của siêu tân tinh này và một vài mô hình được đề xuất để giải thích, ví dụ như một ngôi sao nằm gần lỗ đen bị xé toạc bởi lực thủy triều của nó.

Một trong các sự kiện siêu tân tinh được phát hiện sớm nhất từ thời điểm vụ nổ (khoảng sau 3 tiếng) và do vậy dữ liệu phổ đo được ở thời điểm sớm nhất (khoảng 6 tiếng sau vụ nổ thực sự), là siêu tân tinh loại II SN 2013fs (iPTF13dqy) được ghi lại vào ngày 6 tháng 10 năm 2013 bởi trạm Intermediate Palomar Transient Factory (iPTF). Ngôi sao phát nổ nằm ở thiên hà xoắn ốc NGC 7610, cách xa 160 triệu năm ánh sáng trong chòm sao Phi Mã.

Nhà thiên văn học nghiệp dư Victor Buso đã lần đầu tiên chụp ảnh được siêu tân tinh loại IIb SN 2016gkg đang trong quá trình xảy ra vụ nổ ở giai đoạn sớm nhất (khoảng 90 phút sau vụ nổ thực sự). Ông đã chụp ảnh sự kiện ở các khoảng thời điểm cách đều 90 phút tiếp sau đó. Siêu tân tinh nằm ở thiên hà NGC 613 cách xa 85 triệu năm ánh sáng.

Khám phá

thumb|upright=1.0|right|Ảnh chụp của kính thiên văn Chandra về tàn tích siêu tân tinh [[SNR0519690]]

Dựa trên những nghiên cứu mở rộng về việc phân loại sao mới thực hiện trong thập niên 1930 bởi Walter Baade và Fritz Zwicky ở Đài quan sát Mount Wilson mà họ đã nhận ra có thêm một lớp "siêu" tân tinh thứ hai ngoài lớp sao mới. Tên gọi super-novae lần đầu tiên được sử dụng bởi Baade và Zwicky trong các bài giảng năm 1931 tổ chức tại Caltech, sau đó được sử dụng rộng rãi tại một hội nghị tổ chức bởi hiệp hội Vật lý Mỹ vào năm 1933. Đến năm 1938, dấu gạch ngang đã được bỏ như tên gọi chính thức được sử dụng hiện đại ngày nay. Bởi vì siêu tân tinh là sự kiện xảy ra tương đối hiếm trong một thiên hà, như ở Ngân Hà ước tính có khoảng 3 sự kiện trong một thế kỷ, do vậy để thu thập dữ liệu tốt về siêu tân tinh đòi hỏi phải quan sát theo dõi thường xuyên rất nhiều thiên hà. Mối quan tâm khoa học lớn nhất về siêu tân tinh – ví dụ như là ngọn nến chuẩn cho phép đo khoảng cách – đòi hỏi phải quan sát được cường độ sáng cực đại của nó. Do vậy điều quan trọng đối với một người khám phá đó là thời điểm phát hiện ra siêu tân tinh phải trước khi nó đạt độ sáng cực đại. Nhà thiên văn nghiệp dư, mà số lượng đông đảo hơn nhiều so với nhà thiên văn chuyên nghiệp, đã đóng vai trò quan trọng đối với việc phát hiện siêu tân tinh, bằng chủ yếu chụp ảnh quan sát các thiên hà gần thông qua kính thiên văn quang học và so sánh ảnh chụp với các bức ảnh chụp trước đó.

Về cuối thế kỷ 20 các nhà thiên văn đã tăng cường sử dụng các kính thiên văn điều khiển tự động bằng máy tính và gắn kèm cảm biến ghi hình ảnh CCD để săn lùng siêu tân tinh. Trong khi những hệ thống này khá phổ biến đối với nhóm thiên văn nghiệp dư, các viện nghiên cứu thiên văn chuyên nghiệp cũng trang bị hệ thống tương tự như Kính thiên văn chụp ảnh tự động Katzman (Katzman Automatic Imaging Telescope). Gần đây dự án Hệ thống cảnh báo sớm siêu tân tinh (Supernova Early Warning System, SNEWS) đã bắt đầu sử dụng thiết bị dò neutrino để đưa ra những cảnh báo sớm về vụ nổ siêu tân tinh xảy ra trong Ngân Hà. Neutrino là những hạt cơ bản hình thành với số lượng rất lớn từ vụ nổ siêu tân tinh và chúng hầu như không bị hấp thụ bởi khí và bụi trong môi trường liên sao của đĩa thiên hà.

thumbnail|left|upright=1.2|"Ngôi sao sẽ phát nổ", tinh vân SBW1 bao quanh một sao siêu khổng xanh trong [[tinh vân Carina.]]

Tìm kiếm siêu tân tinh được phân thành hai phạm vi: một phạm vi tập trung vào tìm kiếm các sự kiện xảy ra tương đối gần và phạm vi còn lại phát hiện những sự kiện xảy ra ở rất xa. Bởi vì vũ trụ giãn nở, có thể ước lượng khoảng cách đến một thiên thể ở xa bằng cách đo hiệu ứng dịch chuyển Doppler (hay dịch chuyển đỏ) trên quang phổ phát xạ của nó; trung bình, các thiên hà ở xa hơn lùi ra xa với vận tốc lớn hơn so với thiên hà ở gần và có dịch chuyển đỏ cao hơn. Cho nên công cuộc tìm kiếm siêu tân tinh tách thành giữa tìm kiếm dịch chuyển đỏ cao và dịch chuyển đỏ thấp, với ranh giới phân chia có giá trị dịch chuyển đỏ trong khoảng z=0,1–0,3 – với z là đại lượng không thứ nguyên đo độ dịch chuyển tần số trong quang phổ thu được.

Tìm kiếm dịch chuyển đỏ cao đối với siêu tân tinh thường bao gồm việc quan sát và đo đường cong cường độ ánh sáng của siêu tân tinh. Chúng là công cụ hữu hiệu giúp xác định và định chuẩn biểu đồ Hubble và đưa ra các dự đoán vũ trụ học. Phổ siêu tân tinh, thường được sử dụng để nghiên cứu vật lý và môi trường siêu tân tinh, phù hợp hơn khi dùng dữ liệu của tìm kiếm ở dịch chuyển đỏ thấp. Quan sát ở phạm vi dịch chuyển đỏ thấp cũng giúp củng cố đường cong Hubble ở khoảng cách ngắn, đường cong thể hiện tương quan giữa khoảng cách và dịch chuyển đỏ cho các thiên hà quan sát được. (xem thêm định luật Hubble).

Quy ước đặt tên

thumb|Ảnh kết hợp đa bước sóng [[tia X, hồng ngoại và khả kiến về tàn tích siêu tân tinh Kepler, SN 1604.]] Các khám phá siêu tân tinh được thông báo tới Trung tâm văn phòng điện tín thiên văn học (Central Bureau for Astronomical Telegrams) của Hiệp hội Thiên văn Quốc tế, mà ở đây sẽ gửi ra thông báo đến các nhà thiên văn về tên gọi chính thức cho một siêu tân tinh. Tên gọi được gán bắt đầu bằng SN theo sau bởi năm khám phá và các hậu tố với một hoặc hai chữ cái. Có 26 siêu tân tinh trong một năm được định danh với một chữ cái viết hoa từ A đến Z. Các sự kiện xảy ra sau đó được gán bằng hai chữ viết thường: aa, ab và tiếp tục như vậy. Ví dụ, SN 2003C là tên gọi định danh của siêu tân tinh được phát hiện lần thứ 3 trong năm 2003. Siêu tân tinh phát hiện cuối cùng trong năm 2005 là SN 2005nc và nó là siêu tân tinh thứ 367 được tìm thấy trong năm này. Kể từ năm 2000, các nhà thiên văn nghiệp dư và chuyên nghiệp đã phát hiện vài trăm siêu tân tinh mỗi năm (572 trong năm 2007, 261 trong năm 2008, 390 trong năm 2009; 231 trong năm 2013).

Các siêu tân tinh được biết đến trong lịch sử được định danh đơn giản theo năm phát hiện: SN 185, SN 1006, SN 1054, SN 1572 (gọi là Sao mới Tycho) và SN 1604 (Sao Kepler). Kể từ năm 1885 định danh có thêm chữ cái đã được sử dụng, ngay cả khi nếu trong năm đó chỉ có 1 siêu tân tinh được phát hiện (ví dụ SN 1885A, SN 1907A, v.v.) – và điều này xảy ra lần cuối cùng với sự kiện SN 1947A. SN (viết tắt cho "SuperNova") là tiền tố chuẩn. Cho đến tận năm 1987, định danh với hai chữ viết hậu tố hiếm khi được sử dụng; tuy nhiên bắt đầu từ năm 1988, định danh siêu tân tinh đã phải cần thiết sử dụng đến nó.

Phân loại

thumb|Minh họa siêu tân tinh SN 1993J. Như là một phần trong nỗ lực tìm hiểu siêu tân tinh, các nhà thiên văn đã phân loại chúng theo đặc trưng của đồ thị đường cong cường độ ánh sáng (light curve) và các vạch quang phổ của các nguyên tố hóa học khác nhau xuất hiện trong phổ điện từ. Nguyên tố đầu tiên dùng cho sự phân loại đó là sự có mặt hay thiếu một vạch quang phổ của hiđrô. Nếu quang phổ của một sự kiện siêu tân tinh có vạch phổ của hiđrô (được biết đến là dãy Balmer ở đoạn bước sóng khả kiến của quang phổ) nó được phân thành Loại II; còn không nó được xếp vào Loại I. Trong mỗi loại này có phân thành các nhóm nhỏ dựa trên sự xuất hiện vạch quang phổ của các nguyên tố khác hoặc hình dạng của đường cong cường độ ánh sáng (đồ thị thể hiện cấp sao biểu kiến của siêu tân tinh theo thời gian).

Một số ít sự kiện siêu tân tinh loại Ia thể hiện các đặc điểm bất thường như có độ sáng không bình thường hoặc có đường cong cường độ ánh sáng kéo dài và chúng thường được phân loại theo như sự kiện có đặc điểm tương tự xảy ra lần đầu tiên. Ví dụ, SN 2008ha có độ sáng yếu được phân loại theo như giống với SN 2002cx hoặc loại Ia-2002cx.

Một phần nhỏ các vụ nổ siêu tân tinh loại Ic có đường cong cường độ ánh sáng kéo dài nhiều và trong quang phổ có thêm các vạch phát xạ và là dấu hiệu cho thấy vật chất bắn ra với vận tốc rất lớn. Chúng được nhóm thành loại Ic-BL hoặc Ic-bl.

Loại II

thumb|Đường cong cường độ ánh sáng của siêu tân tinh loại II-P và loại II-L. Trong quang phổ siêu tân tinh loại II xuất hiện vạch hiđrô. Loại này cũng được chia thành các loại nhỏ hơn. Trong khi hầu hết siêu tân tinh loại II thể hiện các vạch quang phổ phát xạ phân bố rất rộng mà ám chỉ vận tốc giãn nở của vật chất phóng ra lên tới vài nghìn kilômét trên giây, thì một số khác, ví dụ như SN 2005gl, có đặc điểm vạch quang phổ tương đối hẹp. Chúng được xếp vào loại IIn, trong đó 'n' viết tắt cho 'narrow'.

Một số siêu tân tinh, như SN 1987K và SN 1993J, thể hiện có sự thay đổi: ở thời gian đầu quang phổ của chúng có các vạch hiđrô, nhưng sau đó từ vài tuần đến vài tháng, các vạch quang phổ heli trở lên nổi trội hơn hẳn. Thuật ngữ siêu tân tinh "loại IIb" được sử dụng để miêu tả các vụ nổ có các đặc điểm kết hợp giữa loại II và loại Ib.

Loại III, IV và V

Fritz Zwicky đã định nghĩa thêm một số loại siêu tân tinh, mặc dù ông dựa trên một số rất ít các sự kiện có tham số mà không khớp thỏa đáng với siêu tân tinh loại I hoặc loại II. SN 1961i ở thiên hà NGC 4303 là loại nguyên mẫu và cho tới nay là sự kiện duy nhất trong nhóm siêu tân tinh loại III, có đặc trưng đường cong cường độ ánh sáng mở rộng cực đại và các vạch hiđrô trong dãy Balmer phân bố rộng xuất hiện chậm theo thời gian trong quang phổ quan sát được. SN 1961f ở thiên hà NGC 3003 là loại nguyên mẫu và cho tới nay là sự kiện duy nhất trong nhóm siêu tân tinh loại IV, với đường cong cường độ ánh sáng giống tương tự như của siêu tân tinh loại II-P, nhưng xuất hiện các vạch phổ hấp thụ hiđrô còn các vạch phổ phát xạ hiđrô lại rất yếu. Loại V được sử dụng cho sự kiện SN 1961V thuộc thiên hà NGC 1058, một siêu tân tinh mờ bất thường hoặc có thể đây là vụ nổ giả siêu tân tinh (supernova impostor) với tiến trình sáng lên chậm và đạt cực đại trong vài tháng, cùng với quang phổ phát xạ thu được bất thường. Tính chất tương tự của SN 1961V đối với sự kiện Bùng phát lớn ở hệ sao Eta Carinae (Eta Carinae Great Outburst) đã được các nhà thiên văn chú ý tới. Siêu tân tinh trong thiên hà M101 (năm 1909) và M83 (năm 1923 và 1957) cũng từng được đề xuất xếp vào siêu tân tinh loại IV hoặc loại V.

Ngày nay các loại kể trên có thể được xếp vào nhóm siêu tân tinh loại II dị thường, mà trong đó đã khám phá thêm nhiều sự kiện được phân loại vào nhóm này, mặc dù cuộc tranh luận liệu SN 1961V có thực sự là siêu tân tinh theo sau vụ bùng phát của sao khổng lồ xanh biến đổi sáng (Luminous blue variable star outburst) hay đây là sự kiện giả siêu tân tinh.

Các mô hình hiện nay

nhỏ|upright=1.2|Loạt ảnh chụp cho thấy tiến trình sáng lên nhanh chóng và mờ chậm dần của một siêu tân tinh trong thiên hà [[NGC 1365 (chấm sáng gần phần trên ở trung tâm của thiên hà, bấm để xem ảnh lớn).]]

Các mã hiệu phân loại cho một siêu tân tinh ở trên có tính chất phân loại một cách tự nhiên: số loại miêu tả ánh sáng quan sát từ siêu tân tinh mà không cần thiết phản ánh nguyên nhân gây ra vụ nổ. Ví dụ, siêu tân tinh loại Ia tạo bởi sự kích hoạt bất thình lình phản ứng tổng hợp hạt nhân vượt giới hạn nhiệt ở sao lùn trắng, trong khi với kiểu quang phổ tương tự siêu tân tinh loại Ib/c hình thành bởi sự suy sụp hấp dẫn ở lõi sao Wolf–Rayet khối lượng lớn. Các đoạn sau tóm tắt các mô hình được cho là giải thích phù hợp nhất về các vụ nổ siêu tân tinh.

Phản ứng vượt giới hạn nhiệt

Quá trình hình thành của siêu tân tinh loại a. Từ trái qua, trên xuống:
1. Sao đôi trong dãy chính
2. Một thành viên (trắng) phồng to thành sao khổng lồ hoặc hơn thế
3. Sao trắng thổi [[gió sao về ngôi sao vàng, làm phồng kích thước sao vàng lên và cả hai chìm vào nhau
4. Cả hai ngôi sao được bọc trong một thể thống nhất
5. Lớp khí vỏ bọc cả hệ bay đi, để lại hai ngôi sao đã giảm kích thước đáng kể
6. Ngôi sao trắng lớn co lại thành sao lùn trắng
7. Sao lùn trắng hút dần vật chất sao đồng hành
8. Sao lùn trắng tăng khối lượng và bùng nổ sau khi vượt quá giới hạn Chandrasekhar
9. Sao đồng hành cũng có thể bị thổi bay đi]] Một sao lùn trắng khi tích tụ đủ vật chất từ một sao đồng hành thì nhiệt độ trong lõi của nó sẽ đạt tới mức đủ để kích hoạt phản ứng tổng hợp cacbon, ở điểm trải qua phản ứng tổng hợp hạt nhân vượt giới hạn nhiệt, phá hủy hoàn toàn ngôi sao gốc. Có ba khả năng miêu tả bằng lý thuyết cho vụ nổ này: hoặc là sự bồi tụ ổn định vật chất từ ngôi sao đồng hành, hoặc hai sao lùn trắng va chạm, hoặc sự bồi tụ khiến kích hoạt phản ứng hạt nhân ở lớp vỏ của sao. Cơ chế nào nổi bật và chiếm chủ yếu trong ba cơ chế miêu tả siêu tân tinh loại Ia vẫn còn chưa được biết rõ ràng. Mặc dù chưa biết cụ thể siêu tân tinh loại Ia được tạo ra như thế nào, các siêu tân tinh loại Ia có những tính chất rất đồng đều và chúng có ích để làm những ngọn nến chuẩn trong xác định khoảng cách đến các thiên hà. Cũng cần phải thực hiện một số hiệu chuẩn để bù lại cho sự thay đổi dần dần trong tính chất hoặc độ sáng bất thường ở những tần số khác nhau của những siêu tân tinh có độ dịch chuyển đỏ cao và cho những biến thiên nhỏ trong độ sáng xác định từ đường cong cường độ ánh sáng hoặc từ quang phổ.

Loại la thông thường

Có một vài tiến trình dẫn đến sự hình thành siêu tân tinh loại Ia, nhưng đằng sau những tiến trình này thì chúng có chung một cơ chế. Nếu một sao lùn trắng chứa cacbon-oxy bồi tụ đủ vật chất đạt tới giới hạn Chandrasekhar vào khoảng 1,44 lần khối lượng Mặt Trời (MTập tin:Sun symbol.svg) (đối với ngôi sao không quay), nó sẽ không còn chịu được sức nặng bản thân duy trì bởi áp suất lượng tử của electron và bắt đầu sụp đổ. Tuy nhiên, quan điểm hiện nay cho rằng giới hạn này bình thường không đạt tới được; sự gia tăng nhiệt độ và mật độ bên trong lõi đã bắt đầu kích hoạt phản ứng tổng hợp hạt nhân khi khối lượng sao tiệm cận tới giới hạn khối lượng (trong vòng nhỏ hơn 1%), trước khi bắt đầu sự sụp đổ. đủ để biến nó thành vụ nổ siêu tân tinh. Một đợt sóng xung kích được hình thành lan tỏa ra bên ngoài, với vận tốc đạt tới 5.000–20.000 km/s, hay gần bằng 3% tốc độ ánh sáng. Cường độ sáng phát ra cũng tăng lên đáng kể, đạt tới cấp sao tuyệt đối có giá trị −19,3 (hay sáng gấp 5 lần so với Mặt Trời), với biến thiên tương đối nhỏ.

Mô hình miêu tả cho sự hình thành của loại siêu tân tinh này đó là hệ sao đôi có quỹ đạo hẹp. Sao lớn hơn trước tiên trải qua bước tiến hóa ra khỏi sao trong dãy chính và thể tích nở rộng trở thành sao khổng lồ đỏ. Hai sao lúc này bao chung bởi một khối khí, khiến cho quỹ đạo của chúng dần dần bị thu hẹp lại. Ngôi sao khổng lồ tiếp đến đẩy ra hầu hết lớp vỏ khí ngoài cùng của nó, khối lượng mất đi cho đến khi lõi sao không còn đủ mật độ và nhiệt độ giảm xuống khiến phản ứng tổng hợp hạt nhân dừng lại. Ở thời điểm này nó trở thành một sao lùn trắng, thành phần chứa chủ yếu cacbon và oxy. Cuối cùng ngôi sao thứ hai cũng tiến hóa khỏi dãy chính để trở thành sao khổng lồ đỏ. Vật chất từ sao khổng lồ bị hút về phía sao lùn trắng ở gần, khiến cho khối lượng của nó tăng dần lên. Mặc dù những nét chủ yếu của mô hình cơ bản này được đông đảo các nhà vật lý thiên văn chấp nhận, nhưng chi tiết chính xác cho sự khởi phát và tạo thành các nguyên tố nặng trong vụ nổ vẫn còn chưa được rõ ràng.

Siêu tân tinh loại Ia đi kèm với một đường cong cường độ ánh sáng rất đặc trưng – đường cong biểu diễn cường độ sáng theo sau vụ nổ. Độ sáng này có nguồn gốc từ các giai đoạn phân rã phóng xạ của Ni-56 trở thành Co-56 rồi đến Fe-56. dùng để đo khoảng cách đến các thiên hà chứa chúng.

Loại Ia khác thường

Mô hình khác giải thích sự hình thành của siêu tân tinh loại Ia là sự va chạm sáp nhập của hai sao lùn trắng, với khối lượng kết hợp lại trong thời gian ngắn vượt giới hạn Chandrasekhar. Có rất nhiều tính chất biến thiên trong kiểu sự kiện này, trong nhiều trường hợp có thể không có vụ nổ siêu tân tinh và khả năng chúng sẽ có đường cong cường độ ánh sáng rộng hoặc hẹp hơn sơ với siêu tân tinh loại Ia thông thường.

Siêu tân tinh loại Ia sáng bất thường được cho là xảy ra khi sao lùn trắng đã sẵn có khối lượng lớn hơn giới hạn Chandrasekhar limit, có khả năng nhờ sự bất đối xứng trong hình dạng của nó, nhưng vật liệu phóng ra sẽ ít hơn động năng thông thường. Loại siêu tân tinh này có thể không phải luôn phá hủy hoàn toàn sao lùn trắng gốc ban đầu và có thể để lại một sao thây ma (zombie star).

Một loại siêu tân tinh loại Ia khác thường đặc biệt khi ở quang phổ có xuất hiện vạch phát xạ của hiđrô cùng những nguyên tố khác, tạo ra quang phổ có dạng hỗn hợp giữa loại Ia bình thường và loại IIn. Ví dụ như ở SN 2002ic và SN 2005gj. Những siêu tân tinh này còn được phân loại thành loại Ia/IIn, loại Ian, loại IIaloại IIan.

Suy sụp lõi

upright=1.2|trái|nhỏ|Phân nhóm siêu tân tinh theo khối lượng và độ kim loại của ngôi sao gốc. nhỏ|Cấu trúc phân lớp dạng củ hành của một ngôi sao khối lượng lớn, tiến hóa đến giai đoạn cuối ngay trước khi bị sụp đổ lõi (không vẽ theo tỷ lệ). Các ngôi sao khối lượng lớn có thể trải qua sụp đổ lõi khi phản ứng tổng hợp hạt nhân không còn tỏa ra đủ năng lượng để duy trì nhiệt trong sao cân bằng với trọng lượng bản thân của nó; vượt qua giới hạn này là nguyên nhân gây ra vụ nổ mọi loại siêu tân tinh trừ siêu tân tinh loại Ia. Sự sụp đổ phóng ra dữ dội lớp vật chất ở ngoài cùng tạo thành siêu tân tinh, hoặc giải phóng năng lượng thế năng hấp dẫn có thể không đủ và ngôi sao có thể suy sụp trực tiếp thành lỗ đen hoặc sao neutron với ít năng lượng tỏa ra ngoài.

Có một vài nguyên nhân dẫn đến sự sụp đổ hấp dẫn: quá trình bắt giữ electron ở các hạt nhân trung hòa giàu proton; khối lượng ngôi sao vượt giới hạn Chandrasekhar; mất ổn định sinh cặp hạt electron - positron; hoặc bởi sự quang phân rã (photodisintegration). Khi lõi một ngôi sao khối lượng lớn phát triển thành một lõi sắt có khối lượng lớn hơn giới hạn Chandrasekhar, nó sẽ không còn tự chống đỡ được khối lượng bản thân nhờ áp suất thoái hóa electron và sẽ tiếp tục sụp đổ thành sao neutron hoặc lỗ đen. Quá trình hạt nhân magnesi bắt giữ electron bên trong một lõi sao thoái hóa chứa O/Ne/Mg gây ra sụp đổ hấp dẫn đi theo sau bởi phản ứng tổng hợp hạt nhân oxy bùng nổ cũng cho những kết quả rất giống nhau tương tự. Phản ứng sinh cặp hạt electron-positron từ các tia gamma năng lượng cao, xảy ra trong một lõi sao lớn sau khi đã đốt cháy hết hạt nhân heli, làm giảm áp suất nhiệt động lực học gây ra kích hoạt vụ sụp đổ và tiếp đó là phản ứng vượt giới hạn nhiệt, tạo thành sự kiện siêu tân tinh có nguyên nhân từ sự bất ổn định sinh cặp (pair-instability supernova). Một lõi sao đủ lớn và nóng có thể tạo ra các tia gamma năng lượng cao để kích hoạt phản ứng quang phân rã trực tiếp, dẫn đến sự sụp đổ lõi sao. Dường như một tỷ lệ lớn các siêu tân tinh loại IIn thực sự là các sự kiện giả siêu tân tinh (supernova impostor), xuất phát từ những vụ phun trào mạnh của các sao siêu khổng lồ xanh biến đổi (LBV]) tương tự như sự kiện Phun trào lớn ở Eta Carinae. Trong những sự kiện này, vật chất phóng ra trước đó từ ngôi sao tạo ra những vạch quang phổ hấp thụ mảnh và tạo ra làn sóng xung kích khi nó tương tác với vật chất bắn ra từ những đợt phun trào sau mới hơn.

trái|upright=1.2|nhỏ|Tàn tích từ một ngôi sao khối lượng lớn. upright=1.4|nhỏ|Bên trong một ngôi sao lớn đã tiến hóa (a) hạt nhân ở từng lớp cấu trúc kiểu củ hành lần lượt trải qua phản ửng tổng hợp, dẫn đến hình thành một lõi sắt (b) và khi khối lượng của nó đạt tới giới hạn Chandrasekhar thì ngôi sao bắt đầu sụp đổ. Các hạt nhân ở phần lõi bị nén thành neutron (c), khiến cho vật chất rơi đợt sau bị bật nẩy trở lại (d) và tạo thành làn sóng xung kích lan tỏa ra bên ngoài (đỏ). Sóng xung kích bắt đầu dừng lại (e), nhưng nó tiếp tục được đẩy ra ngoài nhờ năng lượng bổ sung từ quá trình có thể bao gồm sự tương tác với neutrino. Vật chất bao xung quanh bị thổi ra xa (f), để lại một tàn tích thoái hóa.

Khi nhiệt độ ở bên trong lõi một ngôi sao lớn không còn đủ để cân bằng với khối lượng bản thân của nó, ngôi sao sụp đổ vào trong với vận tốc đạt tới 70.000 km/s (0,23c), làm mật độ và nhiệt độ bên trong tăng lên nhanh chóng. Quá trình nào tiếp theo phụ thuộc vào khối lượng và cấu trúc của lõi đang suy sụp, với lõi thoái hóa khối lượng thấp sẽ hình thành lên sao neutron, trong khi lõi thoái hóa khối lượng cao hầu như sẽ hình thành lên lỗ đen và các lõi chưa thoái hóa trải qua phản ứng nhiệt hạt nhân vượt giới hạn (thermal runaway fusion).

Ở các lõi có khối lượng thấp hơn sự suy sụp bị dừng lại và một lõi neutron mới được hình thành với nhiệt độ ban đầu bằng xấp xỉ 100 tỷ kelvin, cao hơn 6000 lần nhiệt độ bên trong lõi của Mặt Trời. Ở nhiệt độ này, các cặp neutrino-phản neutrino của mọi loại thế hệ được hình thành một cách hiệu quả từ phát xạ nhiệt. Các neutrino nhiệt này có mặt nhiều gấp vài lần so với các neutrino từ sự bắt giữ electron. Khoảng 1046 joule, xấp xỉ 10% khối lượng nghỉ của sao, được chuyển đổi thành các neutrino phát xạ trong 10 giây và là thành phần chính phát ra của sự kiện. Sự ngừng suy sập lõi bất thình lình làm vật chất bật trở lại và tạo ra một sóng xung kích lan ra ở các lõi bên ngoài trong vòng vài miligiây khi năng lượng bị mất đi bởi quá trình phân tách các nguyên tố nặng. Một quá trình cần thiết cho phép các lớp bên ngoài lõi tái hấp thụ khoảng 1044 joule Sự rơi trở lại này sẽ giả thiểu động năng được hình thành và khối lượng vật liệu phóng xạ đẩy ra bên ngoài, nhưng ở một số tình huống nó cũng tạo ra các tia tương đối tính với kết quả là xuất hiện chớp tia gamma hoặc một vụ nổ siêu tân tinh sáng khác thường.

Loại II

nhỏ|Ảnh chụp siêu tân tinh loại II không điển hình với độ sáng thấp, [[SN 1997D.]] Các ngôi sao với khối lượng ban đầu nhỏ hơn 8 lần khối lượng Mặt Trời không bao giờ phát triển thành một lõi đủ lớn để dẫn tới quá trình suy sụp hấp dẫn và chúng tiến hóa theo con đường khác khi mất đi bầu khí quyển và trở thành sao lùn trắng. Các sao với khối lượng ít nhất bằng (và có thể phải từ ) tiến hóa theo tiến trình phức tạp, lần lượt đốt hạt nhân các nguyên tố nặng hơn ở những mức nhiệt độ nóng hơn bên trong lõi của nó. Ngôi sao trở thành có cấu trúc giống như một củ hành, với các hạt nhân càng dễ tổng hợp thì phản ứng xảy ra ở những vỏ lớn hơn (tương ứng với hạt nhân nhẹ hơn). Mặc dù được miêu tả phổ biến như là cấu trúc củ hành với một lõi sắt ở trong cùng, những lõi tiền siêu tân tinh với khối lượng thấp nhất chỉ chứa oxy-neon(-magnesi). Các sao tiệm cận nhánh khổng lồ (Asymptotic giant branch, trong biểu đồ Hertzsprung-Russell) có thể hình thành lên phần lớn các siêu tân tinh suy sụp lõi, mặc dù các siêu tân tinh ít sáng hơn và ít gặp hơn cũng đã được quan sát từ những sao gốc có khối lượng lớn hơn. chụp trong bước sóng tia X (trái) và ánh sáng khả kiến (phải) ở phía cuối bên trên của thiên hà.]]

Các siêu tân tinh này, giống như loại II, là những ngôi sao khối lượng lớn trải qua vụ sụp đổ lõi. Tuy nhiên chúng trở thành các siêu tân tinh loại Ib và Ic vì chúng đã mất hết lớp bao khí quyển chứa hiđrô bởi gió sao mạnh hoặc bởi tương tác với sao đồng hành. Các sao này được biết đến là các sao Wolf–Rayet và chúng xuất hiện có độ kim loại từ trung bình đến cao và gió sao thổi mạnh liên tục gây ra tốc độ mất mát khối lượng lớn đáng kể. Các quan sát siêu tân tinh loại Ib/c không khớp với dữ liệu thu thập được hoặc dự định mà sẽ xảy ra đối với sao Wolf–Rayet và có những cách giải thích khác cho loại suy sụp lõi sao này bao gồm ngôi sao đã bị tước đi lớp hiđrô bởi tương tác với ngôi sao đồng hành. Mô hình hệ sao đôi cho kết quả dự đoán khớp tốt hơn với siêu tân tinh quan sát thực sự, với điều kiện là chưa từng quan sát được hệ sao đôi heli phù hợp nào. Vì một siêu tân tinh có thể xảy ra bất cứ khi nào khối lượng của ngôi sao ở thời điểm suy sụp lõi là đủ thấp mà không gây ra sự sụp đổ sâu hơn thành hố đen, bất kỳ một ngôi sao khối lượng lớn nào tiến hóa đưa đến vụ nổ siêu tân tinh nếu nó mất khối lượng đáng kể trước khi xảy ra suy sụp hấp dẫn lõi. Cơ chế phát ra các chớp GRB là bởi các tia vật chất tác động bởi từ trường mạnh của sao từ quay rất nhanh hình thành sau vụ suy sụp lõi sao. Chùm tia cũng truyền năng lượng vào lớp vỏ đang giãn nở ra bên ngoài sau vụ nổ, tạo thành siêu tân tinh siêu sáng (super-luminous supernova).

Siêu tân tinh từ ngôi sao đã bị tước gần hết lớp bao ngoài lõi (ultra-stripped supernovae) xảy ra khi một ngôi sao phát nổ mà trước đó đã bị mất hầu hết lớp bao vật chất bên ngoài lõi kim loại, chủ yếu bởi quá trình truyền vật chất sang ngôi sao đồng hành bên cạnh có quỹ đạo ngắn. Kết quả là có rất ít vật chất giải phóng từ ngôi sao phát nổ (~0.1 MSun). Trong trường hợp cực biên nhất, siêu tân tinh loại này có thể xảy ra đối với một lõi sắt trần trụi, có khối lượng chỉ cao hơn một chút so với giới hạn Chandrasekhar. SN 2005ek là một ví dụ đã được quan sát cho trường hợp siêu tân tinh phát nổ từ ngôi sa đã bị mất gần hết vật chất bao bên ngoài lõi, với độ sáng khá mờ và đường cong cường độ ánh sáng trên đồ thị nhanh chóng tiêu giảm. Bản chất các siêu tân tinh loại này có thể là ở cả suy sụp hấp dẫn lõi sắt và quá trình bắt giữ electron, tùy thuộc vào khối lượng của lõi sao sụp đổ.

Siêu tân tinh hỏng

Sự suy sụp lõi ở một số ngôi sao khối lượng lớn có thể không hình thành siêu tân tinh trong bước sóng khả kiến. Mô hình chính cho nguyên nhân này đó là một lõi sao có khối lượng đủ lớn mà động năng không đủ để đảo ngược sự rơi về lõi của lớp vật chất bao bên ngoài dẫn tới sự hình thành lỗ đen. Những sự kiện kiểu này khó phát hiện, nhưng theo kết quả một cuộc khảo sát trên diện rộng đã phát hiện được một số ứng cử viên tiềm năng. Sao siêu khổng lồ đỏ N6946-BH1 trong thiên hà NGC 6946 trải qua vụ bùng phát vừa phải trong tháng 3 năm 2009, trước khi mờ đi khỏi vùng quan sát. Chỉ có một nguồn hồng ngoại mờ còn phát hiện được ở vị trí ngôi sao. Cho đến tận khi SN 1987A được quan sát trực tiếp với các tia gamma là đặc trưng không thể nhầm lẫn của các hạt nhân phóng xạ chính phóng ra từ vụ nổ.

Bằng cách quan sát trực tiếp mà các nhà thiên văn học biết rằng phần lớn đường cong cường độ ánh sáng (vẽ trên biểu đồ độ sáng theo thời gian) đo sau khi xuất hiện siêu tân tinh loại II, ví dụ như của SN 1987A, được giải thích bằng quá trình phân rã của các hạt nhân phóng xạ. Mặc dù bức xạ phát sáng có chứa các photon với năng lượng trong phổ khả kiến, năng lượng phóng xạ đã bị hấp thụ bởi khí bắn ra và lớp khí này giữ cho tàn tích siêu tân tinh đủ nóng để phát xạ ánh sáng. Quá trình phân rã phóng xạ của 56Ni thành các hạt nhân con 56Co rồi đến 56Fe tạo ra các photon tia gamma, chủ yếu có năng lượng bằng 847keV và 1238keV, mà bị hấp thụ và là nguồn nung nóng chủ yếu và do vậy làm sáng vật chất phóng ra ở thời điểm trung bình (sau vài tuần) cho đến lúc cuối (sau vài tháng) siêu tân tinh. Năng lượng đối với đỉnh cực đại của đường cong cường độ ánh sáng của SN1987A được cung cấp bởi sự phân rã của 56Ni thành 56Co (thời gian bán rã 6 ngày) trong khi năng lượng cho giai đoạn sau của đường cong ánh sáng lại khớp đặc biệt rất gần với sự phân rã của 56Co (thời gian bán rã 77,3 ngày) thành 56Fe. Những đo lường về sau bằng các kính thiên văn không gian tia gamma về phần nhỏ của tia gamma 56Co và 57Co thoát ra từ tàn tích của SN 1987A mà không có sự hấp thụ đã xác nhận tiên đoán trước đó về hai hạt nhân phóng xạ này là nguồn cấp năng lượng chính cho bức xạ ánh sáng muộn. Những pha ban đầu tại đoạn đường cong cường độ ánh sáng nghiêng dốc xuống khi kích thước hữu hiệu của mặt cầu ánh sáng giảm và vùng bẫy bức xạ điện từ đã tiêu tan. Đường cong ánh sáng tiếp tục nghiêng xuống ở kênh B trong khi nó thể hiện ra một đoạn thẳng nhỏ trong bước sóng khả kiến ở thời điểm 40 ngày sau, nhưng đây chỉ là dấu hiện cho đỉnh cực đại thứ hai xảy ra trong bước sóng hồng ngoại khi một số các nguyên tố nặng bị ion hóa tái kết hợp lại để tạo thành bức xạ hồng ngoại và vật chất bắn ra trở lên trong suốt đối với bước sóng này. Đường cong ánh sáng biểu kiến tiếp tục đi dốc xuống ở độ nghiêng lớn hơn một chút so với tốc độ phân rã của đồng vị coban phóng xạ (mà có nửa thời gian phân rã lâu hơn và kiểm soát đường cong ánh sáng giai đoạn sau), do bởi vì vật liệu được giải phóng trở lên khuếch tán hơn và ít có khả năng biến đổi năng lượng bức xạ cao thành bức xạ khả kiến. Sau vài tháng, đường cong ánh sáng thay đổi tốc độ giảm một lần nữa khi sự phát xạ positron trở thành nổi trội so với coban-56 còn lại, mặc dù giai đoạn này của đường cong ánh sáng vẫn còn ít được nghiên cứu. ngoại trừ giai đoạn đường đồ thị đi ngang (plateau). Ánh sáng biểu kiến phát ra cung cấp chủ yếu từ động năng hơn là từ phân rã phóng xạ kéo dài trong vài tháng, bởi sự tồn tại chính yếu của hiđrô trong vật chất bắn ra từ bầu khí quyển của ngôi sao siêu khổng lồ gốc. Ban đầu lớp khí hiđrô này trở lên nóng và bị ion hóa. Đoạn đồ thị cường độ ánh sáng của siêu tân tinh loại II đi ngang tương ứng với giai đoạn các ion hiđrô tái kết hợp trở thành trung hòa, phát ra ánh sáng khả kiến và trở lên trong suốt hơn. Giai đoạn tiếp theo đường cong cường độ ánh sáng nghiêng dốc xuống là do bởi quá trình phân rã phóng xạ mặc dù diễn ra chậm hơn so với siêu tân tinh loại I, bởi vì sự hiệu quả của quá trình chuyển đổi năng lượng thành ánh sáng của tất cả hiđrô.]] Một câu hỏi tồn tại từ lâu chưa có lời giải đáp xung quanh siêu tân tinh loại II đó là tại sao vật thể compact tàn dư nhận được vận tốc chuyển động tương đối lớn chạy ra xa khỏi trung tâm vụ nổ; các sao xung và do đó là các sao neutron, được quan sát thấy có chuyển động riêng với vận tốc cao và các lỗ đen được cho là cũng có những hành xử tương tự, mặc dù rất khó để quan sát độc lập chúng.

Một mô hình khác đó là sự bồi tụ vật chất vào sao neutron trung tâm có khả năng tạo ra một đĩa vật chất làm phóng ra các tia ở hai cực đẩy vật chất ra khỏi ngôi sao với vận tốc cao, sau đó các sóng xung kích bật ngược trở lại làm phá hủy hoàn toàn ngôi sao. Những tia này có thể đóng vai trò quan trọng trong quá trình vụ nổ siêu tân tinh. (Một mô hình tương tự như thế được ưu tiên để giải thích cho các chớp gamma dài.)

Các bất đối xứng ban đầu cũng đã được xác nhận có ở siêu tân tinh loại Ia thông qua quan sát. Kết quả này có thể ảnh hưởng tới độ sáng ban đầu của siêu tân tinh loại này khi phụ thuộc vào góc quan sát từ Trái Đất. Tuy nhiên, khối vật chất giãn nở ngày càng trở lên đối xứng hơn theo thời gian. Các bất đối xứng ban đầu xác định được bằng cách đo sự phân cực của ánh sáng phát ra.

Năng lượng phát ra

nhỏ|Phân rã phóng xạ của niken-56 và coban-56 tạo thành đường cong cường độ ánh sáng của siêu tân tinh. Mặc dù chúng ta thường nghĩ về siêu tân tinh như là một sự kiện phát ra ánh sáng biểu kiến, bức xạ điện từ chúng phát ra hầu hết chỉ là một hiệu ứng phụ nhỏ. Đặc biệt trong sự kiện siêu tân tinh suy sụp hấp dẫn lõi, bức xạ điện từ phát ra có năng lượng chiếm tỷ lệ rất nhỏ trong tổng năng lượng của toàn bộ vụ nổ. Động năng và lượng niken tạo ra thấp hơn so với siêu tân tinh loại Ia và do đó độ sáng cực đại trong bước sóng khả kiến của siêu tân tinh loại II thấp hơn, nhưng năng lượng từ quá trình làm ion hóa lượng hiđrô còn lại với khối lượng bằng vài lần khối lượng Mặt Trời đóng góp vào sự giảm độ sáng chậm hơn nhiều và tạo ra giai đoạn đường cong cường độ ánh sáng đi ngang (plateau phase) trên đồ thị như ở phần lớn các siêu tân tinh suy sụp lõi.

Ở một số siêu tân tinh suy sụp lõi, vật chất rơi trở lại lỗ đen tạo thành lên hai tia tương đối tinh dẫn đến tạo ra chớp gamma năng lượng lớn trong thời gian ngắn và tiếp tục truyền năng lượng đáng kể vào khối vật chất đã được giải phóng. Đây là một trong những kịch bản giải thích sự hình thành của siêu tân tinh siêu sáng và được cho là cơ chế ở một số vụ nổ hypernova loại Ic và chớp gamma dài. Nếu chùm tia tương đối tính quá ngắn và mờ để xuyên thủng lớp vật chất bao liên sao thì kết quả có thể là một siêu tân tinh với độ sáng thấp và chớp gamma yếu.

Chỉ cho đến vài thập kỷ trước, các sao siêu khổng lồ không được xem là sẽ phát nổ, nhưng nhờ các quan sát mà đã làm thay đổi quan điểm. Sao siêu khổng lồ xanh lam chiếm tỷ lệ cao ngoài mong đợi về số lượng các sao tiền khởi được xác nhận, một phần vì độ sáng cao của nó và dễ dàng phát hiện, trong khi chưa có một sao Wolf–Rayet từng được xác nhận. Các mô hình đã gặp phải khó khăn trong việc giải thích cách mà sao siêu khổng lồ xanh lam mất đủ khối lượng để đạt tới suy sụp lõi mà không tiến triển sang giai đoạn tiến hóa khác. Một nghiên cứu đã chỉ ra một lộ trình có thể xảy ra đối với sao biến đổi xanh lam sáng mà tiến triển thành sao siêu khổng lồ độ sáng thấp rồi tiến tới suy sụp lõi, mà phần lớn trở thành siêu tân tinh loại IIn. Một vài ví dụ cho các sao tiền khởi nóng sáng của siêu tân tinh loại IIn đã được phát hiện: SN 2005gy và SN 2010jl dường như phát nổ từ những sao khối lượng lớn và sáng, nhưng nằm ở rất xa; và SN 2009ip có sao tiền khởi với độ sáng rất cao mà dường như là một sao biến đổi xanh lam (LBV), nhưng hiện lên là siêu tân tinh bất thường mà bản chất chính xác của nó vẫn gây tranh cãi. Mô hình phân bố số lượng cho thấy các siêu tân tinh loại Ib/c đã quan sát có thể được tái tạo lại bằng tập hợp các sao với những sao khối lượng lớn và những sao đã bị mất lớp bao ngoài bởi tương tác trong hệ đôi. Các nguyên tố này là sản phẩm của các phản ứng tổng hợp hạt nhân cho các hạt nhân tới 34S, bằng quá trình sắp xếp lại phân rã quang silic và giả cân bằng trong quá trình đốt cháy silic cho các hạt nhân từ 36Ar và 56Ni và bằng quá trình bắt neutron nhanh trong giai đoạn suy sụp hấp dẫn lõi siêu tân tinh đối với các nguyên tố nặng hơn sắt. Tổng hợp hạt nhân trong Quá trình đốt cháy silic cho số lượng hạt nhân sản phẩm cao gấp 1000–100.000 lần nhiều hơn so với các đồng vị nặng hơn sắt được tạo ra từ quá trình bắt neutron nhanh (r-process). Siêu tân tinh được cho là một trong các nguồn diễn ra phản ứng tổng hợp hạt nhân bắt neutron nhanh (r-process), trong đó các hạt nhân nặng hơn sắt nhanh chóng bắt neutron tại điều kiện nhiệt độ cao và mật độ neutron cao. Các phản ứng này tạo ra hạt nhân không bền chứa nhiều neutron mà sau đó hạt nhân này nhanh chóng phân rã beta để trở thành các hạt nhân nặng bền hơn. Quá trình r tạo ra một nửa các đồng vị nặng hơn sắt, bao gồm plutonium và uranium. Ngoài ra vàng, bạch kim cùng những nguyên tố nặng hơn sắt cũng có thể được tổng hợp với lượng đáng kể từ vụ va chạm sáp nhập của hai sao neutron. Trong cả hai trường hợp, các phổ kế đặt trên các vệ tinh không gian chỉ xác định được gián tiếp dấu hiệu của vàng như Stephan Rosswog viết "chúng tôi chưa có chứng cứ quang phổ cụ thể về những nguyên tố này đã thực sự được hình thành". Tuy nhiên vào tháng 8 năm 2017, dấu hiệu của các nguyên tố nặng, bao gồm vàng, europium..., đã được phát hiện thông qua các quan sát trong bước sóng điện từ theo sau sự phát hiện sóng hấp dẫn GW170817 từ vụ nổ kilonova của hai sao neutron va chạm sáp nhập. Các mô hình thiên văn vật lý hiện tại tính toán trong một sự kiện hai sao neutron sáp nhập có thể tạo ra europium từ 1 đến 5 lần khối lượng Trái Đất và lượng vàng từ 3 đến 13 lần khối lượng Trái Đất.

Một quá trình khác cũng cung cấp đáng kể lượng các nguyên tố nặng hơn sắt đó là quá trình s xảy ra trong các sao già khổng lồ đỏ AGB, nhưng các nguyên tố này hình thành với tốc độ chậm trong chu kỳ dài và không thể tạo ra các nguyên tố nặng hơn chì.

Vai trò trong tiến hóa sao

Tàn tích của nhiều siêu tân tinh chứa một vật thể đặc và sóng xung kích cùng vật chất bắn ra nhanh đang giãn nở. Đám mây vật chất này quét qua môi trường liên sao lân cận trong giai đoạn giãn nở tự do, mà có thể kéo dài trong hai thế kỷ. Sau đó đợt sóng này trải qua giai đoạn giãn nở đoạn nhiệt và vật chất trong đám mây sẽ nguội dần và hòa trộn vào môi trường liên sao trong thời gian khoảng 10.000 năm.

left|thumb|Tàn tích siêu tân tinh N 63A nằm trong một vùng khối mây chứa khí và bụi trong [[Đám Mây Magellan Lớn.]] Vụ Nổ Lớn tạo ra hiđrô, heli và một ít lithium, trong khi tất cả các nguyên tố nặng hơn được tổng hợp trong lõi sao, siêu tân tinh và kilonova. Vụ nổ siêu tân tinh và kilonova có xu hướng làm giàu môi trường liên sao xung quanh bằng các nguyên tố nặng hơn hiđrô và heli, mà các nhà thiên văn thường gọi chúng dưới một cái tên chung là "kim loại". Do đó, mỗi một thế hệ sao sinh ra về sau có thành phần các nguyên tố trong nó hơi khác một chút so với các sao già, biến đổi từ chỉ có thành phần thuần túy là hiđrô và heli cho đến có chứa nhiều "kim loại" hơn. Siêu tân tinh là cơ chế điển hình trong việc phân phối các nguyên tố nặng, mà chúng được hình thành từ các phản ứng tổng hợp hạt nhân trong lòng ngôi sao. Mặt khác, sự có mặt với hàm lượng khác nhau của các nguyên tố hình thành lên một ngôi sao có tác động quan trọng tới chu trình tiến hóa của nó và có thể có ảnh hưởng quyết định đến các hành tinh quay quanh ngôi sao này.

Động năng của sóng xung kích từ tàn tích siêu tân tinh có thể kích hoạt sự hình thành sao khi nó làm nén và cô đặc lại các đám mây phân tử trong không gian xung quanh. Ngược lại, sự gia tăng áp suất nhiễu động cũng có thể ngăn cản sự hình thành sao của đám mây nếu như đám mây phân tử thưa thớt không đủ đậm đặc.

Chứng cứ từ các sản phẩm đồng vị phóng xạ thứ cấp chu kỳ bán rã ngắn chỉ ra khả năng có một vụ nổ siêu tân tinh nằm gần đã bổ sung thêm vật chất cho đám mây phân tử chứa hệ Mặt Trời từ lúc hình thành 4,5 tỷ năm trước và thậm chí nó đã kích hoạt sự hình thành Thái Dương hệ.

Ảnh hưởng đến Trái Đất

Một siêu tân tinh được coi là xảy ra gần Trái Đất nếu nó có những ảnh hưởng đáng kể lên sinh quyển của hành tinh. Phụ thuộc vào loại và năng lượng giải phóng từ siêu tân tinh, ước tính khoảng cách tối đa cho một sự kiện là khoảng 3000 năm ánh sáng.Các tia gamma từ siêu tân tinh có thể cảm sinh phản ứng hóa học trong thượng tầng khí quyển biến đổi phân tử nitơ thành nitơ oxide, gây suy giảm tầng ozone khiến bề mặt Trái Đất bên dưới bị phơi nhiễm trực tiếp bức xạ cực tím từ Mặt Trời. Các nhà cổ sinh học đã từng đề xuất cơ chế này là một trong các nguyên nhân gây ra sự kiện tuyệt chủng Ordovic–Silur, làm tiêu diệt khoảng 60% sinh vật sống trong đại dương Trái Đất. Năm 1996 một nhóm nhà khoa học đã đưa ra lý thuyết về vết tích của siêu tân tinh nằm gần Trái Đất trong lịch sử có thể được phát hiện ngay trên Trái Đất dưới dạng sự có mặt của các đồng vị kim loại trong địa tầng đá. Sự làm giàu đồng vị sắt-60 sau đó được thông báo xuất hiện ở tầng đá dưới đáy sâu của Thái Bình Dương. Năm 2009, mức độ phân bố theo độ sâu của ion nitơrat được tìm thấy ở trong các tầng băng Nam Cực, mà có hai tầng tương ứng với các siêu tân tinh năm 1006 và 1054. Tia gamma từ những vụ nổ siêu tân tinh này có thể đã làm tăng mật độ nitơ oxide, mà sau đó chúng bị lưu trữ ở trong lớp băng.

Siêu tân tinh loại Ia được cho là loại siêu tân tinh nguy hiểm tiềm tàng nhất nếu chúng xuất hiện đủ gần Trái Đất. Bởi vì các siêu tân tinh này xuất hiện bắt đầu từ ánh sáng mờ và sao tiền khởi là những sao lùn trắng trong hệ sao đôi và do vậy dường như một siêu tân tinh có thể ảnh hưởng đến Trái Đất sẽ xảy ra bất ngờ và ở một hệ sao chưa được nghiên cứu kỹ. Ứng cử viên loại này gần nhất là IK Pegasi (xem phần bên dưới). Các ước tính gần đây dự đoán rằng vụ nổ siêu tân tinh loại II xảy ra trong phạm vi 8 parsec (26 năm ánh sáng) có thể phá hủy một nửa tầng ozone của Trái Đất, mặc dù thế không có một sao tiền khởi loại này nằm gần hơn khoảng 500 năm ánh sáng.

Các ứng cử viên trong Ngân Hà

Sự kiện siêu tân tinh tiếp theo ở trong Ngân Hà dường như là sẽ phát hiện được ngay cả khi nó xảy ra ở phía xa bên kia thiên hà. Nhiều khả năng đây là vụ suy sụp hấp dẫn của một sao siêu khổng lồ đỏ không nổi bật và rất có thể rằng nó đã được liệt kê vào danh mục trong những cuộc khảo sát ở bước sóng hồng ngoại như 2MASS. Có một cơ hội nhỏ cho sự kiện suy sụp tiếp theo sẽ được tạo ra bởi một loại sao khối lượng lớn khác như sao siêu kềnh khổng lồ vàng, sao biến quang xanh lam sáng (luminous blue variable), hoặc sao Wolf–Rayet. Xác suất để sự kiện siêu tân tinh tiếp theo là loại Ia từ một sao lùn trắng được tính toán bằng khoảng 1/3 so với của siêu tân tinh suy sụp lõi. Và những sự kiện này có thể quan sát được ở bất cứ vị trí nào chúng xảy ra, nhưng có ít khả năng sao tiền khởi đã được quan sát trước đó. Có thể thậm chí các nhà thiên văn không biết chính xác đặc điểm của hệ sao tiền khởi siêu tân tinh loại Ia và khó phát hiện khi chúng ở xa hơn khoảng cách vài parsec. Tổng tần suất xảy ra siêu tân tinh trong thiên hà của chúng ta ước tính vào khoảng từ 2 đến 12 sự kiện trong một thế kỷ, mặc dù chúng ta đã không thực sự quan sát thấy một sự kiện nào trong vòng vài thế kỷ qua.

thumb|[[Tinh vân bao quanh sao Wolf–Rayet WR124, nằm cách Trái Đất 21.000 năm ánh sáng.]] Về mặt thống kê, siêu tân tinh tiếp theo dường như sẽ xuất phát từ một sao siêu khổng lồ đỏ không nổi bật và có những khó khăn trong việc xác định được sao siêu khổng lồ nào đang trong những giai đoạn cuối cùng của phản ứng tổng hợp các nguyên tố nặng trong lõi của chúng và ngôi sao còn tỏa sáng trong vòng mấy triệu năm còn lại. Những sao siêu khổng lồ đỏ khối lượng lớn nhất được cho là sẽ tỏa ra bầu khí quyển của chúng và tiến hóa thành sao Wolf–Rayet trước khi tiến tới thời điểm suy sụp hấp dẫn. Mọi sao Wolf–Rayet sẽ kết thúc khỏi chu trình Wolf–Rayet trong một vài triệu năm, nhưng một lần nữa vẫn còn khó để xác định sao nào đang gần thời điểm suy sụp nhất. Có một lớp mà thời gian tiến hóa không nhiều hơn một vài nghìn năm trước khi nó phát nổ đó là sao Wolf–Rayet WO, do lõi heli của chúng đã cạn kiệt. Mới chỉ có 8 sao lớp này được phát hiện và 4 sao trong số chúng thuộc Ngân Hà.

Vài sao nổi tiếng và nằm ở gần đã được nhận định là ứng cử viên siêu tân tinh suy sụp lõi tiềm năng: sao siêu khổng lồ đỏ Antares và Betelgeuse; sao siêu khổng lồ vàng Rho Cassiopeiae; sao biến quang xanh lam sáng Eta Carinae mà đã từng tạo ra một sự kiện giả siêu tân tinh (supernova impostor); và một sao thành viên sáng nhất, thuộc lớp sao Wolf–Rayet, trong hệ sao Gamma Velorum. Các sao khác cũng thu hút được sự chú ý, mặc dù không phải hoàn toàn, khi là các sao tiền siêu tân tinh cho chớp tia gamma; ví dụ WR 104.

Việc phát hiện ra ứng cử viên cho siêu tân tinh loại Ia mang nhiều tính ước đoán hơn. Bất kỳ hệ sao đôi nào có một sao lùn trắng đang bồi đắp vật chất có thể dẫn tới vụ nổ siêu tân tinh mặc dù cơ chế chính xác và khoảng thời gian chờ đợi vẫn còn gây tranh luận. Các hệ này có cấp sao mờ và khó nhận ra, nhưng đối với các sao mới và sao mới tuần hoàn là những hệ thường được coi là những sao tiền khởi của chúng. Một ví dụ là sao U Scorpii. Ứng cử viên siêu tân tinh loại Ia gần nhất được biết đến là sao IK Pegasi (HR 8210), nằm ở khoảng cách 150 năm ánh sáng, nhưng các quan sát gợi ra sẽ phải mất hàng triệu năm nữa trước khi sao lùn trắng bồi đắp đủ vật chất để đạt tới khối lượng tới hạn trước khi phát nổ thành siêu tân tinh loại Ia.

👁️ 3 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Siêu tân tinh** (chữ Hán: 超新星) hay **sao siêu mới** (; viết tắt là **SN** hay **SNe**) là một sự kiện thiên văn học biến đổi tức thời xảy ra trong giai đoạn cuối của
right|thumb|Tàn dư đang giãn nở của [[SN 1987A, một siêu tân tinh loại II dị thường trong Đám mây Magellan Lớn. _ảnh của NASA._]] **Siêu tân tinh loại II** là kết quả của sự sụp đổ
phải|nhỏ|[[Eta Carinae, trong chòm sao Carina, một trong những ứng cử viên sáng giá cho một hypernova ở tương lai]] **Cực siêu tân tinh** hay **siêu tân tinh cực sáng** là một ngôi sao đặc
Minh họa phần trung tâm của tinh vân hành tinh Henize 2-428 trong [[Thiên Ưng (chòm sao)|Thiên Ưng gồm hai sao lùn trắng có khối lượng nhỏ hơn Mặt Trời ]] **Siêu tân tinh loại
Trong thiên văn học, **siêu tân tinh giàu calci** là một phân lớp siêu tân tinh có độ sáng mờ nhạt hơn các siêu tân tinh khác và tạo ra một lượng lớn calci bất
phải|nhỏ|300x300px|Tàn tích siêu tân tinh [[SN 1054 (_Tinh vân Con Cua_).]] **Tàn tích siêu tân tinh** là những kết cấu vật chất còn lại từ kết quả của một vụ nổ của một ngôi sao
**Tổng hợp hạt nhân siêu tân tinh** là sự tổng hợp hạt nhân của các nguyên tố hóa học trong vụ nổ siêu tân tinh. Trong các ngôi sao đủ lớn, quá trình tổng hợp
**G1.9+0.3** là tàn tích siêu tân tinh trẻ nhất được biết đến nằm trong dải Ngân hà. Tàn tích này được phát hiện qua kết hợp dữ liệu từ sự quan sát của hai kính
**Siêu tân tinh 2006gy** mang ký hiệu **SN2006gy** được đánh giá là vụ nổ siêu tân tinh (supernova) lớn nhất trong lịch sử, phát ra ánh sáng gấp 5 lần các vụ nổ khác mà
**Danh sách siêu tân tinh** sau đây bao gồm các vụ nổ sao siêu mới chủ yếu đã được quan sát và ghi nhận, được đặt tên và công nhận rộng rãi, đã được ít
frame|right|Minh họa một sao lùn trắng [[Bồi tụ (thiên văn học)|bồi tụ hiđrô từ một sao đồng hành lớn hơn.]] **Tân tinh** hay **sao mới** là một vụ nổ hạt nhân lớn xảy ra trên
**Tinh vân Con Cua** (các tên gọi danh lục M1, NGC 1952, Taurus A) là một tinh vân gió sao xung trong chòm sao Kim Ngưu, đồng thời là tàn tích của siêu tân tinh Thiên
thế=Sao xung Vela (giữa) và tinh vân gió sao xung ở xung quanh nó.|nhỏ|[[Sao xung Vela (giữa) và tinh vân gió sao xung ở xung quanh nó.]] **Tinh vân gió sao xung** (đôi khi còn
[[Cray-2; máy tính nhanh nhất thế giới trong thời gian 1985–1989.]] Một **siêu máy tính ** là một máy tính vượt trội trong khả năng và tốc độ xử lý. Thuật ngữ **Siêu Tính Toán**
Một **ngôi sao zombie** là kết quả giả thuyết của một siêu tân tinh loại Iax để lại một ngôi sao còn sót lại, thay vì phân tán hoàn toàn khối lượng của ngôi sao.
nhỏ|Cassiopeia A được quan sát bởi Kính viễn vọng Không gian Hubble **Cassiopeia A** (**Cas A**) là tàn dư siêu tân tinh (SNR) trong chòm sao Thiên Hậu và nguồn vô tuyến ngoài trời sáng
**Siêu tân tinh 1604**, còn được gọi là **siêu tân tinh Kepler**, **sao mới Kepler** hay **ngôi sao Kepler**, là một siêu tân tinh xảy ra trong Ngân Hà, cách Trái Đất trong khoảng 6
thumb|Chuỗi các ảnh chụp theo thời gian của Kính thiên văn không gian Hubble, chụp trong 15 năm từ 1994 đến 2009, cho thấy sự va chạm của [[tàn tích siêu tân tinh|di tích đang
**IK Pegasi** (hay **HR 8210**) là một hệ sao đôi có vị trí biểu kiến nằm trong chòm sao Phi Mã. Nó có độ sáng vừa đủ để có thể quan sát thấy bằng mắt
**G299.2-2.9** là một tàn tích siêu tân tinh trong Ngân Hà, cách Trái Đất 16.000 năm ánh sáng. Bán kính quan sát được của lớp vỏ còn sót lại tương ứng với thời gian giãn
**SN 1006** là hiện tượng thiên văn có độ sáng cao nhất từng được biết đến trong lịch sử. Nó xuất hiện lần đầu tại chòm sao Sài Lang ngày 30 tháng 4 và 1
nhỏ|Tinh vân [[chòm sao Lạp Hộ nhìn từ kính viễn vọng không gian Hubble.]] **Tinh vân** (từ Hán-Việt nghĩa là _mây sao_; tiếng Latinh: _nebulae_ có nghĩa là "đám mây") là hỗn hợp của bụi,
**Siêu tân tinh 2010lt** là một vụ nổ sao siêu mới được ghi nhận bởi một cô bé lúc đó 10 tuổi Kathryn Aurora Gray, con của một nhà thiên văn nghiệp dư thành phố
**SN 185** là một sự kiện thiên văn học biến đổi tức thời được quan sát thấy trong năm 185, có khả năng là một siêu tân tinh. Sự kiện thiên văn thoáng qua này
**Sagittarius A** (viết tắt: **Sgr A**) là một nguồn bức xạ vô tuyến thiên văn tại trung tâm dải Ngân Hà, thuộc chòm sao Nhân Mã. Phần quang phổ khả kiến của nó bị các
**NGC 2060** là cụm sao mở trong Tinh vân Tarantula trong Đám mây Magellan Lớn, rất gần với cụm NGC 2070 lớn hơn chứa R136. Nó được phát hiện bởi John Herschel vào năm 1836.
MÔ TẢ SẢN PHẨMCông dụng của máy khuếch tán tinh dầu: 1. Thanh lọc không khí Máy khuếch tán và tinh dầu tinh chất giúp diệt khuẩn, thanh lọc không khí, tăng cường và kích
**Deneb**, tên Hán Việt: **sao Thiên Tân** (α Cyg / α Cygni / Alpha Cygni) là ngôi sao sáng nhất trong chòm sao Thiên Nga và là một đỉnh của Tam giác mùa hè. Đứng
nhỏ|Ghi chép của người Trung Quốc về SN 1054 **SN 1054** hay **Thiên Quan khách tinh** (_Siêu tân tinh Con Cua_) là một siêu tân tinh từng được quan sát thấy rộng khắp trên Trái
**N44** là một tinh vân phát xạ với cấu trúc siêu bong bóng nằm ở Đám Mây Magellan Lớn, một trong những thiên hà vệ tinh của Ngân Hà trong chòm sao Doradus. Ban đầu
Máy Khuếch Tán Tinh Dầu Oilmart Quả Đào - 10W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 15ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Thông Số- Dung tích: 400ml- Công
**ASASSN-15lh** là một siêu tân tinh siêu sáng được phát hiện bởi Hệ thống máy tìm kiếm và phát hiện siêu tân tinh tự động hoá (ASAS-SN) năm 2015 trong chòm sao nam Ấn Đệ
Máy Khuếch Tán Tinh Dầu Oilmart Quả Đào - 10W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 15ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Thông SốDung tích: 400mlCông suất: 10WKhả
Máy Khuếch Tán Tinh Dầu Oilmart Quả Đào - 10W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 15ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Thông Số- Dung tích: 400ml- Công
Máy Khuếch Tán Tinh Dầu Oilmart Bí Khoét - 12W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 400mlCông suất: 12WKhả năng
Máy Khuếch Tán Tinh Dầu Oilmart Bí Khoét - 12W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 400mlCông suất: 12WKhả năng
Máy Khuếch Tán Tinh Dầu Oilmart Quả Đào - 10W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 15ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Thông SốDung tích: 400mlCông suất: 10WKhả
Máy Khuếch Tán Tinh Dầu Bầu Tiên - 9W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 400mlCông suất: 9WChất liệu: Nhựa
Máy khuyếch tán tinh dầu MEDISANA AH 670 - Sản phẩm hỗ trợ sức khỏe số 1 tại Đức Mã SP: TD14 Giá sale chỉ 2350k Máy có chức năng cân bằng độ ẩm trong
Máy Khuếch Tán Tinh Dầu Bầu Tiên - 9W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 400mlCông suất: 9WChất liệu: Nhựa
Máy Khuếch Tán Tinh Dầu Cánh Hoa Dung Tích 550ml (Kèm Điều Khiển)- Tặng tinh dầu 15ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 500mlCông suất: 14WChất liệu: Nhựa
Máy Khuếch Tán Tinh Dầu Oilmart Nụ Trắng M18 - 16W 300mlDung tích: 300mlCông suất: 16WKhả năng khuếch tán: 30m2 - 40m2.Đèn Led: 7 màu chuyển đổiThời gian hoạt động: 6h - 7hCông Dụng:Máy khuếch
Máy Khuếch Tán Tinh Dầu Oilmart Bí Khoét - 12W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 400mlCông suất: 12WKhả năng
Máy Khuếch Tán Tinh Dầu Oilmart Quả Đào - 10W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 15ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Thông Số- Dung tích: 400ml- Công
Máy Khuếch Tán Tinh Dầu Oilmart Bình Xoay - 16W 200ml- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 200mlCông suất: 16WKhả năng khuếch tán: 20m2
Máy Khuếch Tán Tinh Dầu Bầu Tiên - 9W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 400mlCông suất: 9WChất liệu: Nhựa
Máy Khuếch Tán Tinh Dầu Oilmart Bình Xoay - 16W 200ml- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 200mlCông suất: 16WKhả năng khuếch tán: 20m2
Máy Khuếch Tán Tinh Dầu Bí - 9W 400ml (Kèm Điều Khiển)- Tặng tinh dầu 15ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 400mlCông suất: 9WChất liệu: Nhựa ABSĐèn
Máy Khuếch Tán Tinh Dầu Oilmart Loa Nhạc - 14W 1000ml (Tích Hợp Bluetooth)- Tặng tinh dầu 50ml: Ngẫu nhiên (1 trong 3 mùi: Gỗ Thông, Vỏ Cam, Sả Tươi)Dung tích: 1000mlCông suất: 14WKhả năng
Máy tạo ẩm và khuếch tán tinh dầu Medisana AH661 Mã SP: TD13 Giá Sale 1850k Máy tạo ẩm Medisana AH 661 với công nghệ siêu âm giúp tạo độ ẩm bổ sung cho những