✨Ganymede (vệ tinh)
Ganymede (phiên âm /ˈgænɨmiːd/ GAN-ə-meed) là vệ tinh tự nhiên lớn nhất của Sao Mộc và cũng là vệ tinh lớn nhất trong hệ Mặt Trời. Thậm chí nó còn lớn hơn cả Sao Thủy, vốn đã từng được coi là một hành tinh (bán kính 2634,1 km so với 1195 km hay 2,2 lần, thể tích 7,6 × 1010 km³ so với 0,715 × 1010 km³ hay 11 lần và khối lượng 148,19 × 1021 kg so với 12,5 × 1021 kg hay 12 lần). Ganymede quay một vòng quanh Sao Mộc hết hơn 7 ngày. Tính theo khoảng cách đến Sao Mộc, Ganymede là vệ tinh đứng thứ 7 trong tất cả các vệ tinh và đứng thứ 3 trong 4 vệ tinh lớn của Sao Mộc (4 vệ tinh Galileo).
Vệ tinh Ganymede có thành phần chủ yếu từ đá silicate và băng đá. Ganymede được phân lớp đầy đủ thành các lớp riêng biệt với một lõi nóng chảy giàu sắt. Các nhà khoa học tin rằng giữa các lớp băng của Ganymede là một biển nước muối dày nằm sâu 200 km trong lòng vệ tinh. Bề mặt của nó có 2 kiểu địa hình chính. Vùng tối màu có vô số những hố thiên thạch, được hình thành 4 tỉ năm trước và chiếm 1/3 diện tích bề mặt vệ tinh. Phần còn lại là vùng sáng màu hơn có nhiều những rặng núi và đường rãnh hình thành muộn hơn một chút. Nguyên nhân của những vết đứt gãy địa tầng xuất hiện trên vùng sáng của Ganymede có thể là từ những hoạt động địa chất sinh ra từ nhiệt ma sát do biến dạng của Ganymede dưới lực hấp dẫn từ Sao Mộc. Một nhà thiên văn khác, Simon Marius, đã đề xuất đặt tên cho vệ tinh theo tên của nhân vật trong thần thoại Hi Lạp Ganymede. Đây là nam thần rót rượu cho Zeus và là một trong những người tình của Zeus Ông cũng đặt tên cho chúng là những Những ngôi sao của Medici và cân nhắc thêm một cái tên khác là Những ngôi sao của Cosimo theo tên của đại công tước Cosimo de’ Medici, người bảo trợ cho những nghiên cứu khoa học của ông.
Nicolas-Claude Fabri de Peiresc, một nhà thiên văn học người Pháp đề nghị đặt tên các thành viên của gia đình Medici cho các vệ tinh, nhưng đề nghị này bị bác bỏ. lúc đầu muốn đặt tên cho 4 vệ tinh ấy là: Sao Thổ của Sao Mộc, Sao Mộc của Sao Mộc (tức là Ganymede), Sao Kim của Sao Mộc và Sao Thủy của Sao Mộc. Nhưng đề nghị này cũng không được chấp thuận. Sau đó, theo một đề xuất của Johannes Kepler, Marius đưa ra những cái tên khác. Nó quay một vòng hết 7 ngày và 3 giờ. Giống như hầu hết các vệ tinh, Ganymede luôn quay một mặt về phía Sao Mộc. Quỹ đạo của Ganymede rất tròn với độ dẹt gần bằng 0. Mặt phẳng quỹ đạo hơi nghiêng một chút so với đường xích đạo của Sao Mộc. Độ dẹt và độ nghiêng nói trên thay đổi gần như có chu kỳ (cỡ khoảng vài trăm năm) do sự nhiễu loạn hấp dẫn từ Mặt Trời và các thiên thể khác. Khoảng thay đổi của độ dẹt là cỡ 0,0009–0,0022 trong khi khoảng thay đổi góc nghiêng cỡ 0,05–0,32°. Góc nghiêng giữa trục của vệ tinh và pháp tuyến mặt phẳng quỹ đạo do đó cũng thay đổi từ 0 đến 0,33°.
Ganymede tham gia vào một hệ quỹ đạo cộng hưởng đặc biệt với Europa, và Io: mỗi vòng quay của Ganymede tương ứng với 2 vòng quay của Europa và 4 vòng quay của Io. Thời điểm Io và Europa nằm trên cùng một bán kính vẽ từ tâm Sao Mộc, Io nằm ở cận điểm của quỹ đạo và Europa nằm tại viễn điểm. Khi Europa và Ganymede ở vị trí tương tự, Europa nằm ở cận điểm của quỹ đạo.
Hiệu ứng cộng hưởng Laplace hiện tại khiến cho độ dẹt quỹ đạo của Ganymede không thể đạt giá trị cao hơn. Giả thuyết thứ hai là hệ cộng hưởng được hình thành sau một quá trình thay đổi quỹ đạo sau đó. Quá trình đó có thể diễn giải như sau: Io tăng dần bán kính quỹ đạo của nó với Sao Mộc cho đến khi nó hình thành cộng hưởng 2: 1 với Europa. Sau đó quá trình này vẫn tiếp tục nhưng một phần của mômen quay được chuyển sang cho Europa. Đến lượt Europa tăng dần bán kính quỹ đạo đến khi hình thành cộng hưởng 2: 1 với Ganymede Với đường kính của Ganymede là 5268 km, cho thấy nó bằng 0,413 lần so với đường kính Trái Đất, 0,77 lần so với Sao Hỏa, 1,02 lần so với Titan của Sao Thổ (vệ tinh lớn thứ hai trong Hệ Mặt Trời), 1,08 lần so với Sao Thủy, 1,09 lần so với Callisto, 1,45 lần so với Io và 1,51 lần so với Mặt Trăng. Khối lượng của Ganymede lớn hơn 10% khối lượng của Titan, 38% của Callisto, 66% của Io và 2 lần của Mặt Trăng.. Ngoài ra còn có thể xuất hiện một số băng dễ bay hơi như băng amonia. Người ta vẫn chưa xác định được chính xác thành phần cấu tạo của Ganymede nhưng có lẽ đá trên Ganymede sẽ tương đối giống với các thiên thạch thường dạng L/LL. So với thiên thạch dạng H, thiên thạch dạng L/LL có ít sắt nguyên chất, nhiều oxit sắt hơn nhưng lại kém về tổng khối lượng sắt trong cấu tạo. Tỉ lệ giữa sắt và silic ở khoảng từ 1,05–1,27, trong khi ở Mặt Trời tỉ lệ này là cỡ 1,8, lớn hơn đáng kể so với tỉ lệ băng trên Ganymede nói chung. Các quan trắc quang phổ cận hồng ngoại của Ganymde đã cho thấy sự xuất hiện của dải hấp thụ rất mạnh của băng nước tại các bước sóng 1,04, 1,25, 1,5, 2,0 và 3,0 μm. Phần bề mặt có nhiều đường rãnh sáng hơn và có nhiều băng hơn phần bề mặt mịn và tối màu. Phân tích quang phổ sử dụng tia hồng ngoại và tia cực tím với độ phân giải cao bằng tàu thám hiểm Galileo và bằng các kính thiên văn mặt đất đã chỉ ra sự tồn tại của một số chất khác trên bề mặt Ganymede: CO2, SO2, (CN)2, các sulfat và thậm chí là một số hợp chất hữu cơ. Một số muối sulfate đã được phát hiện bởi tàu Galileo như magnesi sulfate (MgSO4) hay có thể là natri sulfate (Na2SO4). Các muối này có thể bắt nguồn từ đại dương ngầm trong lòng Ganymde. Europa cũng có hiện tượng tương tự nhưng Calliso thì ngược lại. Hầu hết các hố thiên thạch trên Ganymede (có 1 ngoại lệ) không phát hiện thấy sự tích tụ CO2, một điểm rất khác biệt so với Callisto. Lượng CO2 trên Ganymede có thể đã bị thất thoát trong quá khứ. Kết quả này được rút ra từ mômen quán tính của Ganymede là 0,3105 ± 0,0028. Giá trị rất thấp này được xác định bằng những tính toán của tàu Galileo. Mật độ của phần lõi vào khoảng 5,5–6 g/cm³ và mật độ phần trung gian là 3,4–3,6 g/cm³ Cũng có một vài suy đoán về khả năng sống được bên trong lớp đại dương ngầm của Ganymede. có nhiều đất sét và các chất hữu cơ. Chúng có thể giúp chúng ta tìm hiểu cấu tạo của những thiên thể cổ xưa đã va đập và tích tụ để hình thành nên các vệ tinh của Sao Mộc ngày nay. Sự biến dạng của băng phía trong thiên thạch có thể đã làm nóng phần lõi của Ganymede và đồng thời làm biến dạng phần quyển đá. Các vết nứt cùng với những phần bề mặt bị biến dạng lồi lõm đã xóa đi 70% bề mặt cổ xưa thay bằng vùng bề mặt trẻ hơn. Nhiệt do phân rã phóng xạ hiện nay là nguồn nhiệt lớn nhất cung cấp cho phía bên trong của vệ tinh. Nhưng các nghiên cứu cho thấy, trong quá khứ, nếu như quỹ đạo của Ganymede dẹt hơn hiện tại, nhiệt do biến dạng có thể là nguồn nhiệt quan trọng hơn nhiệt do phân rã phóng xạ trong quá trình hình thành nên vệ tinh.
Các miệng hố thiên thạch xuất hiện ở cả hai vùng bề mặt của Ganymede. Mặc dù vậy thì ở vùng tối, các miệng hố này xuất hiện dày đặc hơn rất nhiều. Trong thời kì từ 4 tỉ đến 3,5 tỉ năm trước, Ganymede đã bị các thiên thạch bắn phá dữ dội giống như Mặt Trăng. Nhìn chung, các miệng hố thiên thạch của Ganymede nông và phẳng hơn so với tại Mặt Trăng và Sao Thủy. Điều này có thể được giải thích nếu nhìn vào cấu tạo ngoài của Ganymede: phần vỏ băng của vệ tinh này mềm hơn, băng có thể chảy xuống và làm cho miệng hố mềm và yếu, dễ bị phá hủy hơn. Một số hố thiên thạch rất cổ thậm chí còn gần như đã biến mất, chỉ để lại những dấu tích gọi là palimpsest. Một khu vực đáng chú ý khác có thể kể đến là vùng băng ở cực. Được quan sát lần đầu tiên bởi tàu Voyager, mũ băng này trải dài tới tận vĩ độ 40° Sự hiện diện của từ trường trên Ganymede dẫn đến việc bắn phá mãnh liệt hơn các hạt tích điện rơi vào bề mặt tại các vùng cực không được bảo vệ; sau đó phún xạ dẫn đến sự tái phân bố các phân tử nước, với việc băng dịch chuyển đến các vùng lạnh hơn trong toàn địa hình vùng cực. (tương tự như hiện tượng nhật thực). Từ đó họ đã tính ra áp suất khí quyển của Ganymede là khoảng 1 μBar. Bằng việc quan sát hiện tượng che lấp sử dụng quang phổ gần quang phổ tia cực tím, có bước sóng ngắn (< 200 nm) nhạy hơn trong việc xác định sự tồn tại của các chất khí so với bước sóng ánh sáng thường, tàu Voyager dã phủ nhận sự tồn tại khí quyển trên bề mặt Ganymede. Mật độ khí gần bề mặt của Ganymede là nhỏ hơn 1,5 × 109 cm−3, tương ứng với áp suất khí tại bề mặt của vệ tinh là khoảng 2,5 × 10−5 μBar. HST đã phát hiện thấy có sự phát quang của oxy nguyên tử tại các bước sóng ngắn 130,4 nm and 135,6 nm. Đó có thể là kết quả của việc các phân tử oxy bị bắn phá bởi các luồng electron từ vũ trụ. Những số liệu này tương đối phù hợp với những số liệu thu được bởi tàu Voyager vào năm 1981. Khí quyển mỏng này rõ ràng không phải là kết quả của sự sống trên Ganymede, đó đơn thuần chỉ là sản phẩm của việc băng nước trên bề mặt của vệ tinh bị bắn phá phân tách thành oxy và hydro. Trong khi hydro quá nhẹ và thất thoát ra ngoài vũ trụ.
nhỏ|Bản đồ phân bố nhiệt trên bề mặt Ganymede (ở đây màu không đúng như trong thực tế)
Sự tồn tại của lớp khí quyển trung tính trên Ganymede sẽ khẳng định sự tồn tại của tầng điện ly trên vệ tinh này. Các phân tử oxy chắc chắn sẽ chịu sự bắn phá của các điện tử năng lượng cao đến từ từ quyển. Mặc dù vậy, hiện nay câu hỏi về sự tồn tại của tầng điện ly trên Ganymede vẫn chưa được trả lời chính xác bởi vì sự tồn tại của khí quyển trên vệ tinh này cũng chưa được khẳng định. Một số tính toán từ tàu thăm dò Galileo cho thấy sự tích tụ mật độ electron gần bề mặt vệ tinh, một bằng chứng về sự tồn tại của tầng điện ly. Thế nhưng một số quan sát khác lại không phát hiện được nó. Đến năm 1997, người ta tiếp tục phát hiện thấy vạch hấp thụ của phân tử oxy O2. Vạch hấp thụ chỉ có thể quan sát được nếu như oxy tồn tại trong trạng thái tương đối dày đặc. Điều này có thể giải thích được nếu như ta giả thiết oxy phân tử bị giữ lại ở trong băng. Độ đậm của vạch hấp thụ tùy thuộc vào kinh độ và vĩ độ chứ không phụ thuộc vào độ phản xạ bề mặt của khu vực quan sát. Vạch của O2 giảm khi vĩ độ của khu vực quan sát tăng lên, trong khi vạch của O3 thay đổi theo chiều hướng ngược lại. Các nhà khoa học đã khẳng định được rằng, O2 trong băng bề mặt của Ganymede không tồn tại thành từng cụm hay thành bọt mà phân tán vào băng trong nhiệt độ bề mặt của Ganymede (khoảng 100 K).
Vào năm 1997, các nhà khoa học đã tìm kiếm sự tồn tại của natri trong lớp khí xung quanh Ganymede sau khi phát hiện ra sự tồn tại của chất này trong khí quyển của Europa. Tuy nhiên, các kết quả là không đáng kể. Ở giữa độ cao 7.800 và 15.600 km, người ta có phát hiện thấy dấu vết của natri những với mật độ chỉ bằng 1/13 so với mật độ trên Europa ở cùng độ cao. Nguyên nhân của hiện tượng này có thể là do bề mặt của Ganymede thiếu natri hoặc là do từ quyển đã hạn chế các hạt mang năng lượng. Một thành phần khác xuất hiện trong khí quyển của Ganymede là hydro nguyên tử. Người ta đã phát hiện thấy sự tồn tại của chúng ở độ cao lên tới 3.000 km so với bề mặt vệ tinh. Mật độ hydro nguyên tử là khoảng 1,5 × 104 cm−3.
Từ quyển
nhỏ|Bán cầu có hướng ngược với hướng quay của Ganymede. Ảnh chụp từ tàu Galileo đã được tăng cường màu sắc
Tàu thám hiểm Galileo đã thực hiện 6 lần bay ngang qua Ganymede trong khoảng thời gian từ năm 1995 đến 2000 (các chuyến bay mang mã hiệu G1, G2, G7, G8, G28 và G29) đã phát hiện thấy mô men từ trường trên Ganymede tồn tại độc lập với từ trường của Sao Mộc. Giá trị của đại lượng này là khoảng 1.3 × 1013 T•m³. Trong từ quyển có một khu vực nằm trong khoảng vĩ độ từ -30° đến 30°, các đường sức từ ở đó là các đường kín bắt đầu và kết thúc ở trên vệ tinh. Tại khu vực này, các ion và electron bị giữ lại, tạo thành một vành đai phóng xạ. Thêm vào đó, những cơn mưa ion nặng liên tục bắn phá vùng cực của vệ tinh đã khiến cho băng tại khu vực này càng tối màu hơn.
nhỏ| Từ trường của Ganymede trong tương quan với từ quyển của Sao Mộc. Các đường sức từ đóng được tô bằng màu xanh lá
Sự tương tác giữa từ quyển của Ganymede và plasma của Sao Mộc có những điểm tương tự với tương tác giữa từ quyển Trái Đất và gió Mặt Trời.
Bên cạnh mô men từ trường tự có, người ta còn thấy sự tồn tại của từ trường lưỡng cực hưởng ứng, nguyên nhân sinh ra từ trường của nó cũng sẽ tương tự như nguyên nhân đã sinh ra từ trường trên Trái Đất. Đó có thể là kết quả của việc các vật chất dẫn điện chuyển động bên trong lõi của thiên thể.
Mặc dù việc Ganymede có nhân cấu tạo từ sắt có thể giải thích cho nguồn gốc của từ quyển, nhưng vẫn còn rất nhiều điều bí ẩn về từ quyển của vệ tinh này. Một giả thuyết khác cho rằng các đá silic trong vỏ của vệ tinh vẫn bị từ hóa gây nên từ trường của Ganymede. Điều này có thể xảy ra nếu như trong quá khứ từ trường sinh ra do những quá trình cơ nhiệt trong lòng Ganymede mạnh hơn hiện tại. Những đám bụi khí này đã tích tụ dần dần tạo nên các vệ tinh lớn của Sao Mộc. Quá trình tích tụ của Ganymede là khoảng 10.000 năm, ngắn hơn rất nhiều so với quá trình tích tụ của Callisto (theo ước tính là khoảng 100.000 năm). Đám mây bụi khí này khá thiếu các chất khí tại thời điểm 4 vệ tinh lớn của Sao Mộc hình thành, vì thế Callisto có quá trình hình thành tương đối dài. Giả thuyết nói trên là lời giải thích khá thỏa đáng cho câu hỏi: tại sao 2 vệ tinh lớn nói trên có vẻ rất khác nhau mặc dù xấp xỉ về khối lượng cũng như kích thước. Bị mất nhiệt, Callisto không thể làm tan chảy phần lớn băng của mình. Những hoạt động đối lưu trên Callisto chỉ khiến nó được phân lớp một phần, chúng không cung cấp nhiều thông tin về vệ tinh này. Tiếp theo đó là Voyager 1 và Voyager 2, bay qua Ganymede vào năm 1979. Chúng đã xác định lại kích thước của Ganymede. Những tính toán mới cho thấy Ganymede lớn hơn vệ tinh Titan của Sao Thổ và là vệ tinh lớn nhất trong hệ Mặt Trời. Đồng thời chúng cũng quan sát được bề mặt nhiều vết xẻ của Ganymede. nhỏ|Dải sáng Uruk chụp bởi tàu Galileo năm 2000 nhỏ|Bề mặt Ganymede chụp bởi Galileo năm 2000 nhỏ|trái|Ganymede chụp bởi New Horizons năm 2007 Năm 1995, tàu thám hiểm Galileo bay vào quỹ đạo xung quanh Sao Mộc và trong khoảng thời gian từ năm 1996 đến năm 2000 đã thực hiện 6 lần bay qua Ganymede. Trong lần thám hiểm năm 2001, người ta cũng công bố phát hiện ra biển trên Ganymede.
Trong tương lai, một dự án mang tên Europa Jupiter System Mission (EJSM) (dự án nghiên cứu Sao Mộc và các vệ tinh, chủ yếu là Europa) liên kết giữa 2 trung tâm khoa học vũ trụ NASA và ESA có thể được thực hiện vào năm 2020. Vào tháng 2/2009, 2 trung tâm này đã xác định đây là mục tiêu quan trọng có mức ưu tiên cao hơn dự án Titan Saturn System Mission (dự án khám phá vệ tinh Titan của Sao Thổ). Mặc dù vậy, đóng góp của phía ESA vẫn đang bị đặt dấu hỏi do vấn đề tài chính. Dự án này có thể gồm một vệ tinh bay quanh Sao Mộc của ESA, một vệ tinh bay quanh Europa của NASA và một vệ tinh nghiên cứu từ trường Sao Mộc của JAXA.
Một dự án khác đã bị hủy bỏ là Jupiter Icy Moons Orbiter (tạm dịch là vệ tinh thám hiểm các Mặt trăng băng của Sao Mộc). Dự án này dự định sẽ sử dụng năng lượng hạt nhân và sẽ nghiên cứu Ganymede một cách chi tiết. Tuy nhiên do thiếu kinh phí, dự án đã bị hủy bỏ năm 2005. Một dự án cũ khác cũng đã bị hủy là Grandeur of Ganymede.
hình trên một chiếc cốc Athen thế kỷ 5 TCN, vẽ bởi một họa sĩ Briseis. [[Bảo tàng Louvre|Louvre]] thumb|upright=1.1|[[Zeus (hay Jupiter) trong hình dạng một con đại bàng, bắt cóc