✨Khuếch đại điện tử

Khuếch đại điện tử

Thông thường một mạch khuếch đại hay bộ khuếch đại, đôi khi còn gọi là khuếch đại (tiếng Việt gọi là Ăm-li hay Âm-li), là một thiết bị hoặc linh kiện bất kỳ nào, sử dụng một lượng công suất nhỏ ở đầu vào để điều khiển một luồng công suất lớn ở đầu ra. Trong các ứng dụng thông dụng, thuật ngữ này hiện nay được dùng chủ yếu cho các bộ khuếch đại điện tử và thông thường là các ứng dụng thu và tái tạo tín hiệu điện tử. Mối liên quan giữa đầu vào và đầu ra của một bộ khuếch đại, thường được diễn giải như là một hàm của tần số, được gọi là hàm truyền và biên độ của hàm truyền được gọi là độ lợi hay độ khuếch. Đánh giá đầy đủ về khuếch đại là ba lượng độ khuếch điện áp (voltage gain), độ khuếch dòng (current gain) và độ khuếch công suất (power gain).

Những đặc tính chung

Hầu hết các mạch khuếch đại được định giá bằng một số các thông số:

Độ lợi

Độ lợi của mạch khuếch đại là tỷ số giữa công suất đầu ra Pout và công suất đưa vào điều khiển Pin, là KP = P{out}/P_{in}.

Trong thực tế độ lợi được tính trên thang đo decibel (dB), trong đó trị số đo tỷ lệ với quan hệ lôgarit của tỷ số nói trên: G \text{ }(dB) = 20 \text{ }lg (P{out}/P{in}) .

Dải động ngõ ra

Dải động ngõ ra là một dải biên độ, thường sử dụng đơn vị dB, là khoảng cách giữa tín hiệu lớn nhất và tín hiệu nhỏ nhất mà đầu ra có thể phản ánh được. Vì tín hiệu nhỏ nhất thường bị giới hạn bởi biên độ nhiễu, nên người ta lấy luôn tỷ số giữa biên độ tín hiệu lớn nhất và nhiễu làm dải động ngõ ra.

Băng thông và thời gian đáp ứng

Băng thông của một mạch khuếch đại thường được xác định theo sự khác biệt giữa tần số thấp nhất và tần số cao nhất ở điểm mà hệ số khuếch đại giảm còn 1/2. Thông số này còn gọi là băng thông −3 dB. Trong trường hợp những băng thông ứng với những độ chính xác khác nhau thường phải ghi chú thêm, thí dụ như (−1 dB, −6 dB, v.v.).

Thí dụ như một mạch khuếch đại âm tần tốt phải có đáp ứng bằng phẳng từ 20 Hz đến 20 kHz (dải âm thanh mà người ta nghe được), như vậy đáp ứng tần số của nó phải mở rộng thêm ra bên ngoài dải này từ 1 đến 2 bát độ mỗi bên. Thông thường một mạch khuếch đại âm tần tốt có băng thông từ 10 Hz đến 65 kHz.

Thời gian đáp ứng (còn gọi là thời gian tăng trưởng) của một mạch khuếch đại thời gian cần thiết để nâng mức điện áp ngõ ra từ 10% đến 90% tín hiệu đỉnh khi đặt ở đầu vào một điện áp bước, biểu diễn bằng ''hàm bước Heaviside 1(t).

Nhiều mạch khuếch đại bị giới hạn bởi tốc độ tăng, thường là do trở kháng của mạch dòng điện điều khiển phải chịu hiệu ứng tụ điện ở vài điểm trong mạch. Điều này là cho băng thông ở công suất lớn nhất sẽ thấp hơn so với đáp ứng tần số ở mức tín hiệu nhỏ.

Đối với một mạch đơn giản chỉ có RC, còn gọi là đáp ứng Gauss, thời gian tăng trưởng được tính gần đúng:

:'''Tr × BW = 0,35

Trong đó Tr là thời gian đáp ứng tính bằng giây, và BW là băng thông tính bằng Hz.

Thời gian trả về và sai số

Đó là thời gian để ngõ ra trả về đến một mức nào đó (thí dụ 0,1%) của tín hiệu hoàn chỉnh. Điều này thường được đặt ra với các mạch khuếch đại trục tung của máy hiện sóng và các mạch khuếch đại trong các hệ thống đo lường chính xác.

Tốc độ đáp ứng

Tốc độ đáp ứng là tốc độ thay đổi tín hiệu cao nhất ở ngõ ra, thường được tính bằng volt/giây (hoặc mili giây, micro giây).

Tạp âm

Tạp âm (còn gọi là tiếng ồn, nhiễu), hiển thị số đo có bao nhiêu tạp âm được tạo ra trong quá trình khuếch đại. Tạp âm là những thành phần không mong muốn, nhưng cũng không tránh khỏi của các linh kiện và các thành phần trong mạch. Nó được đo bằng thang decibel hoặc bằng điện áp đỉnh của nhiễu đầu ra, khi không có tín hiệu đầu vào.

Hiệu suất

Hiệu suất là một số đo biểu thị mức độ bao nhiêu công suất tiêu thụ ở hệ thống đã được chuyển hóa thành năng lượng hữu ích ở đầu ra của mạch khuếch đại.

  • Các mạch khuếch đại lớp A có hiệu suất rất thấp, trong khoảng từ 10 đế 20%, và hiệu suất tối đa là 25%.
  • Các mạch khuếch đại lớp B hiện đại có hiệu suất trong khoảng 35 đến 55%, với hiệu suất cao nhất theo lý thuyết là 78,5%.
  • Các mạch khuếch đại lớp D tiên tiến sử dụng kỹ thuật điều biến độ rộng xung cho hiệu suất lên đến 97%.

Hiệu suất của một mạch khuếch đại giới hạn độ lớn của công suất hữu dụng ở ngõ ra. Lưu ý rằng các mạch khuếch đại có hiệu suất cao sẽ chạy mát hơn, và có thể không cần đến quạt làm mát ngay cả khi thiết kế lên đến nhiều kilowatt.

Độ tuyến tính

Một mạch khuếch đại lý tưởng phải là một thiết bị tuyến tính hoàn toàn, nhưng những mạch khuếch đại thực tế thường chỉ tuyến tính trong một phạm vi giới hạn nào đó. Khi tín hiệu được đưa đến đầu vào tăng, thì đầu ra cũng tăng theo cho đến khi đạt đến một điểm mà một linh kiện nào đó trong mạch bị bão hòa, và không thể cho thêm tín hiệu ra. Ta nói tín hiệu bị cắt xén, và đây là một trong những nguyên nhân gây ra méo dạng.

Một số mạch khuếch đại được thiết kế để hoạt động theo kiểu chấp nhận giảm bớt độ lợi thay vì phải chịu méo dạng. Kết quả là tín hiệu chịu một hiệu ứng nén, Và nếu là tín hiệu âm thanh, thì hiệu ứng này không làm thỏa mãn người nghe lắm. Đối với các mạch khuếch đại này, điểm nén 1 dB được đặt ra, xác định là độ lợi ở tín hiệu 1 dB sẽ nhỏ hơn độ lợi ở các tín hiệu nhỏ.

Tuyến tính hóa là một lĩnh vực nổi bật. Có rất nhiều kỹ thuật được sử dụng để giảm bớt méo dạng do không tuyến tính.

Tỉ số tín hiệu trên tạp âm

Tỉ số: Tín hiệu / Tạp âm = S / N

trong đó: S: Tín hiệu hữu ích N: Tạp âm (nhiễu)

Các mạch khuếch đại điện tử

Có nhiều loại mạch khuếch đại điện tử cho nhiều ứng dụng khác nhau. Những mạch khuếch đại thông dụng nhất là khuếch đại điện tử, thường sử dụng trong vô tuyến truyền thanh và truyền hình, như các máy phát và máy thu sóng vô tuyến, các hệ thống âm thanh độ trung thực cao, high fidelity ("hi-fi") các máy vi tính và các thiết bị số khác. Các thành phần chủ yếu là các linh kiện tích cực như đèn điện tử chân không và tranzito.

Các lớp của mạch khuếch đại

Các mạch khuếch đại được phân chia thành các lớp theo góc dẫn của tín hiệu đầu vào khi đi qua mạch khuếch đại. thumb|Khuếch đại âm tần dùng transistor chung Emitter lớp A ;Lớp A Khi hiệu suất không phải là vấn đề đáng quan tâm, đa số các mạch khuếch đại tuyến tính tín hiệu nhỏ được thiết kế ở Lớp A. Điều đó có nghĩa là các thiết bị đầu ra luôn làm việc ở trong vùng dẫn. Các mạch khuếch đại Lớp A thường tuyến tính và ít phức tạp hơn các lớp khác, nhưng hiệu suất lại rất kém. Loại mạch khuếch đại này thường được sử dụng nhiều ở các tầng khuếch đại tín hiệu nhỏ, hoặc các tầng công suất thấp như các tầng để nghe bằng tai nghe. thumb|Méo Crossover ở khuếch đại Lớp B ;Lớp B Trong các mạch khuếch đại Lớp B, sẽ có 2 linh kiện đầu ra (hoặc 2 bộ linh kiện), mỗi linh kiện sẽ lần lượt dẫn trong đúng 180 độ của tín hiệu vào (hay đúng nửa chu kỳ).

;Lớp AB Các mạch khuếch đại Lớp AB được phối hợp giữa 2 Lớp A và Lớp B, làm tăng cường độ tuyến tính của các tín hiệu nhỏ, sẽ có góc dẫn lớn hơn 180 độ tùy thuộc vào sự lưa chọn của nhà thiết kế. Thông thường chúng được sử dụng trong các mạch khuếch đại tần số thấp như hệ thống âm thanh và hi-fi, do có sự phối hợp giữa hiệu suất và độ tuyến tính hoặc các thiết bị mà cả hiệu suất lẫn độ tuyến tính đều có tầm quan trọng như nhau.

;Lớp C Các mạch khuếch đại Lớp C thông thường được dùng trong các mạch khuếch đại tần số sóng vô tuyến công suất cao, có góc dẫn nhỏ hơn 180 độ của tín hiệu vào. Độ tuyến tính không được tốt nhưng không ảnh hưởng gì vì chỉ khuếch đại một tần số duy nhất. Tín hiệu sẽ được phục hồi thành hình sin nhờ các mạch cộng hưởng và hiệu suất cao hơn các mạch khuếch đại Lớp A, B và AB.

;Lớp D Các mạch khuếch đại Lớp D, hay còn gọi là các mạch khuếch đại điều biến độ rộng xung, sử dụng kỹ thuật chuyển mạch để đạt được hiệu suất rất cao (hơn 90% ở các mạch khuếch đại hiện đại). Vì nó chỉ cho phép các linh kiện chỉ ở dạng hoàn toàn dẫn hoặc không dẫn, tiêu tán trên linh kiện sẽ là tối thiểu. Một số loại mạch khuếch đại điều biến độ rộng xung đơn giản vẫn còn được tiếp tục sử dụng. Tuy nhiên, các mạch khuếch đại kiểu đóng ngắt hiện đại sử dụng kỹ thuật số, thí dụ như kỹ thuật điều biến sigma-delta, cho độ trung thực tối ưu. Trước đây, lớp D được sử dụng trong các mạch khuếch đại loa siêu trầm vì giới hạn của băng thông và khả năng không gây méo dạng, sau này các tiến bộ kỹ thuật chất bán dẫn đã cho phép chế tạo các mạch khuếch đại có độ trung thực cao, dải tần rộng, với tỷ số nhiễu trên tín hiệu và hệ số méo dạng thấp tương đương với những mạch khuếch đại tuyến tính cùng loại. thumb|Mạch tương đương của khuếch đại lớp E ;Các lớp khác Có vài loại mạch khuếch đại lớp khác, mặc dù nó chỉ là biến thể của các loại ban đầu. Thí dụ như mạch khuếch đại Lớp H và Lớp G được xem như biến thể của độ lớn nguồn cung cấp (theo dạng bước hoặc liên tục) tùy thuộc vào tín hiệu đầu vào. Lượng tiêu tán nhiệt có thể giảm bớt, do điện áp rơi trên các linh kiện thấp. Loại này có thể kết hợp với các lớp kinh điển. Các mạch khuếch đại kiểu này thường phức tạp và thường chỉ sử dụng cho một số ứng dụng đặc biệt, thí dụ như trong các tầng công suất rất lớn. Tương tự như vậy, các mạch khuếch đại Lớp E và Lớp F thường được mô tả trong các tài liệu cho các ứng dụng tần số vô tuyến khi hiệu suất của các lớp truyền thống thay đổi so với những giá trị thực tế. Các lớp này sử dụng các mạch điều hưởng họa tần bậc cao ở mạng đầu ra, để tăng cường hiệu suất, và có thể xem như hậu duệ của Lớp C do các đặc tính góc dẫn của chúng.

;Khuếch đại công suất Thuật ngữ "khuếch đại công suất" là thuật ngữ chỉ các mạch có mối liên hệ giữa lượng công suất đưa đến tải và lượng công suất lấy từ nguồn nuôi. Thông thường mạch khuếch đại công suất được thiết kế cho mạch khuếch đại sau cùng trong một chuỗi các tầng, và tầng này được thiết kế với sự quan tâm nhiều về hiệu suất. Vì lý do đó các mạch khuếch đại công suất thường được sử dụng các lớp trên, ngoại trừ Lớp A.

Mạch khuếch đại đèn điện tử

Khi các mạch khuếch đại bán dẫn đã thay thế rộng rãi các mạch khuếch đại đèn điện tử chân không (valve amplifier) công suất cỡ nhỏ, thì các mạch khuếch đại đèn điện từ chân không lại có giá trị tỷ như Radar, thiết bị đo đếm hoặc các thiết bị thông tin liên lạc. Nhiều mạch khuếch đại sóng cực ngắn vẫn sử dụng các loại đèn chân không thiết kế đặc biệt, như đèn klystron, gyrotron, Đèn sóng chạy, và crossed-field amplifier, và các đèn sóng cực ngắn này có công suất ra cho mỗi linh kiện lẻ cao hơn loại sử dụng linh kiện mạch rắn.

Mạch khuếch đại Tranzito

Quy luật chung của linh kiện tích cực là làm cho biên độ của tín hiệu đầu vào trở thành một tín hiệu hữu ích có biên độ lớn hơn ở đầu ra. Số lần mà tín hiệu được làm cho lớn lên gọi là độ lợi sẽ phụ thuộc vào thiết kế mạch bên ngoài cũng như bản thân linh kiện đó.

Nhiều loại linh kiện tích cực được dùng trong mạch khuếch đại tranzito như Tranzito hai mối nối (BJTs), Tranzito hiệu ứng trường o xít kim loại (MOSFET).

Có nhiều ứng dụng cho mạch khuếch đại. Một số thí dụ thông dụng nhất như các mạch khuếch đại âm tần cho hệ thống nghe nhạc tại nhà hoặc trên xe ô tô, các hệ thống khuếch đại cao tần, phát xạ cao tần troing các máy thu và phát vô tuyến...

Mạch khuếch đại thuật toán (op-amps)

Mạch khuếch đại thuật toán là mạch tích hợp rắn có thể ráp phối hợp với các mạch hồi tiếp bên ngoài để có thể điều chỉnh hàm truyền hay độ lợi của nó.

Mạch khuếch đại vi sai

Một mạch khuếch đại vi sai là một mạch khuếch đại tích hợp mạch rắn, có những mạch hồi tiếp bên ngoài để điều khiển hàm truyền hoặc độ lợi của nó. Khuếch đại vi sai hoàn toàn (Fully differential amplifier) cũng gần tương tự với mạch khuếch đại thuật toán, nhưng có đầu ra vi sai.

Mạch khuếch đại thị tần

Những mạch khuếch đại tín hiệu thị tần thực sự có băng thông khá rộng, lên đến 5 MHz. Phải có những yêu cầu đặc biệt về đáp ứng bước để có thể thu được hình ảnh tốt.

Mạch khuếch đại dọc cho máy hiện sóng

Những mạch khuếch đại này phải đáp ứng được với tín hiệu thị tần, để điều khiển đèn hình của máy hiện sóng, và có thể có băng thông lên đến 500 MHz. Những đặc tính của đáp ứng bước, thời gian đáp ứng, mức độ quá tải và sai số có thể làm cho việc thiết kế trở nên khó khăn.

Mạch khuếch đại phân bố

Mạch khuếch đại phân bố (Distributed Amplifier) sử dụng đường truyền để tạm thời tách các tín hiệu và khuếch đại từng phần riêng biệt để có được băng thông lớn hơn, trường hợp sử dụng một mạch khuếch đại đơn lẻ. Ngõ ra của mỗi tầng có thể nối với nhau qua đường dây truyền. Loại mạch khuếch đại kiểu này thường được sử dụng trong các tầng khuếch đại dọc cuối cùng cho máy hiện sóng. Đường truyền có thể được tích vào bên trong đèn hình.

Các mạch khuếch đại vi ba

Mạch khuếch đại đèn sóng chạy (TWT)

Mạch khuếch đại đèn sóng chạy (Traveling wave tube) sử dụng trong các ứng dụng khuếch đại vi ba tần số thấp công suất cao. Các mạch thông thường có thể khuếch đại suốt dải tần số của vi ba. Tuy nhiên, chúng thường không dễ dàng cộng hưởng như đèn Klystron.

Đèn Klystron

Tương tự như đèn sóng chạy, nhưng đèn này có công suất cao hơn, và có tần số đặc trưng. Chúng cũng thường nặng nề hơn đèn sóng chạy, nên khó thích ứng với những ứng dụng di động cần trọng lượng nhỏ. Đèn Klystron có khả năng cộng hưởng, xuất ra tín hiệu chọn lựa trong dải tần đặc trưng của nó.

Mạch khuếch đại nhạc cụ, khuếch đại âm thanh

Mạch khuếch đại âm thanh và khuếch đại nhạc cụ thường được dùng để khuếch đại các tín hiệu có tần số âm thanh như âm nhạc và giọng nói con người...

👁️ 1 | 🔗 | 💖 | ✨ | 🌍 | ⌚
Thông thường một **mạch khuếch đại** hay **bộ khuếch đại**, đôi khi còn gọi là **khuếch đại** (tiếng Việt gọi là _Ăm-li_ hay _Âm-li_), là một thiết bị hoặc linh kiện bất kỳ nào, sử
**Máy khuếch đại điện quay**, còn gọi là **máy phát điện từ trường ngang**, **máy phát khuếch đại**, **amplidyne**, là một máy phát điện một chiều, có cấu trúc đặc biệt, nhằm tạo ra một
Trong kỹ thuật điện tử **độ khuếch đại** hay **độ khuếch**, **độ lợi** là đánh giá định lượng khả năng của mạch hai ngõ (hay hai cổng), thường là các bộ khuếch đại, về tác
thumb|
Biểu diễn một Khuếch đại vi sai. Các ngõ vào thuận "+" và đảo "-". Các đường cấp nguồn là Vs+ và Vs−, thường bỏ qua trong [[sơ đồ mạch điện để sơ đồ sáng
nhỏ|phải|Hai [[Vôn kế điện tử]] **Điện tử học**, gọi tắt là **khoa điện tử**, là một lĩnh vực khoa học nghiên cứu và sử dụng các thiết bị điện hoạt động theo sự điều khiển
thumb|Một tiền khuếch đại âm thanh ráp bằng [[transistor]] **Tiền khuếch đại** (tiếng Anh: _preamplifier_ thường viết gọn là _preamp_) là bộ khuếch đại điện tử thực hiện khuếch đại một tín hiệu điện yếu
thumb|Tăng âm stereo của hãng [[Unitra.]] thumb|Bảng mạch của một tăng âm stereo. **Khuếch đại âm thanh** còn gọi là **tăng âm**, **ampli điện**, là một loại khuếch đại điện tử thực hiện khuếch đại
**Khuếch đại tuyến tính** (tiếng Anh: _Linear amplifier_), là một mạch điện tử có đầu ra tỷ lệ thuận với đầu vào của nó, nhưng có khả năng phân phối nhiều điện hơn vào tải.
**Mạch khuếch đại thuật toán** (tiếng Anh: operational amplifier), thường được gọi tắt là **op-amp** là một mạch khuếch đại "DC-coupled" (tín hiệu đầu vào bao gồm cả tín hiệu BIAS) với hệ số khuếch
**Mạch khuếch đại từ** là một thiết bị điện từ trường dùng để khuếch đại các tín hiệu điện. Khuếch đại từ được khám phá vào đầu thế kỷ 20 và dùng thay thế cho
## Khái niệm Transistor **khuếch đại điện** khi điện thế xuất từ chân thu lớn hơn điện thế nhập tại chân nền. Để Transistor thực thi chức năng Khuếch đại điện. Trước nhất, Transistor phải
**Đèn điện tử chân không 4 cực** hay còn gọi là **tetrode**. Đèn điện tử này có bốn điện cực theo thứ tự từ trung tâm ra ngoài là: catốt nhiệt, lưới thứ nhất và
Bài này nêu lên một số ứng dụng tiêu biểu của các linh kiện tích hợp mạch rắn - Mạch khuếch đại thuật toán. Trong bài có sử dụng các sơ đồ đơn giản hóa,
**Guitar điện** là loại đàn guitar sử dụng bộ cảm biến và truyền dẫn âm thanh để chuyển đổi các rung động của dây đàn thành các xung điện, từ đó có thể truyền đi
Đèn điện tử chân không hai cực Đèn điện tử chân không ba cực Trước đây, **đèn điện tử chân không** (_vacuum tube_, còn được gọi tắt là _tube_ hay _valve_) còn thường được gọi
thumb|
Khuếch đại đo điển hình lập từ 3 [[khuếch đại thuật toán|op-amp
]] **Khuếch đại đo lường** hay **khuếch đại đo đạc** (tiếng Anh: Instrumentation hoặc Instrumentational amplifier) là một bộ khuếch đại vi sai có
thumb|Sơ đồ khối của dao động phản hồi tuyến tính; bộ khuếch đại _A_ với đầu ra _Vo_ được đưa trở lại vào đầu vào _Vf_ thông qua bộ lọc _β(jω)_. **Dao động tử điện
**Khuếch đại quang học** hay **khuếch đại tín hiệu quang học** là thiết bị trực tiếp khuếch đại tín hiệu quang học mà không cần phải chuyển đổi nó thành tín hiệu điện. Một bộ
Các **dụng cụ đo lường điện tử** (đôi khi được gọi là **hệ thống đo lường điện tử**) là các dụng cụ đo lường có chức năng đo lường các đại lượng vật lý hoặc
**_Ingress _**là một trò chơi nhập vai trực tuyến thực tế ảo tận dụng công nghệ định vị toàn cầu (GPS) được phát triển bởi Niantic Labs, một công ty con thuộc Google. Trò chơi
thumb|Linh kiện điện tử Các **linh kiện điện tử** là các _phần tử rời rạc cơ bản_ có những tính năng xác định được dùng cho ghép nối thành _mạch điện_ hay _thiết bị điện
thumb|upright|**Biểu tượng đèn năm cực**
Các điện cực từ trên xuống dưới:
:anode (bảng)
:lưới chặn
:lưới màn hình
:lưới khống chế
:cathode
:dây nung (sợi tóc) **Đèn điện tử chân
**Mạch điện tử** là mạch điện bao gồm các linh kiện điện tử riêng lẻ, như điện trở, bóng bán dẫn, tụ điện, cuộn cảm, điốt, vi mạch,... được nối bằng các dây dẫn hoặc
Hình ảnh bên ngoài của đèn điện tử chân không 3 cực (triode). **Đèn điện tử chân không 3 cực** hay còn gọi với cái tên **triode**, đây là thế hệ đèn điện tử chân
Trong điện tử, một **bát độ** (ký hiệu oct) là một đơn vị logarit cho các tỷ số giữa các tần số, với một bát độ tương ứng với tần số nhân đôi. Ví dụ:
**Vĩ cầm điện tử** là loại đàn vĩ cầm được gắn kết các thiết bị sử dụng điện năng để phát ra và truyền đi âm thanh của nó. Đây là một loại nhạc cụ
thumb|Máy phát điện xoay chiều 100 kVA và máy dynamo kích từ bằng đai, năm 1917. Một máy phát điện hoặc động cơ điện bao gồm một rotor quay trong một từ trường. Từ trường
Trong các bộ khuếch đại điện tử, **biên độ pha** (PM) là sự khác biệt giữa pha, được đo bằng độ, và 180°, cho một tín hiệu đầu ra khuếch đại (liên quan đến đầu
thumb|upright=2|Ống klytron khoảng 5 kW được sử dụng làm bộ khuếch đại công suất trong máy phát truyền hình [[Tần số cực cao|UHF vào năm 1952. Khi được lắp đặt, ống sẽ xuyên qua các lỗ
nhỏ|upright=1.5|Một chùm tia âm cực tạo thành một hình tròn trong [[từ trường. Các tia âm cực thường không nhìn thấy được, nhưng trong ống này có đủ lượng khí dư để các nguyên tử
thumb|Một vạn năng kế điện tử tự động chọn thang đo **Đồng hồ vạn năng** hay **vạn năng kế** là một dụng cụ đo lường điện có nhiều chức năng, nhỏ gọn dùng cho đo
Điện tử đã có các bước tiến mạnh mẽ trong nửa cuối Thế kỷ 20,trở thành ngành công nghiệp mũi nhọn,thâm nhập sâu rộng vào mọi lãnh vực của đời sống xã hội. Nội dung
nhỏ|180x180px|[[Tia âm cực|Ống phóng tia âm cực - thiết bị thường dùng trong tivi. ]]Các chất khí ở áp suất khí quyển là những chất cách điện tốt. Trong các chất khí đó, hầu như
Sơ đồ nguyên lý của nam châm điện đầu tiên. Dòng điện cung cấp bởi nguồn pin tạo ra từ trường trong cuộn dây và được khuếch đại bởi lõi dẫn từ làm bằng sắt
Mô phỏng cấu tạo và sự hoạt động của loa điện động Mô phỏng sơ đồ mạch điện và cấu tạo loa tĩnh điện **Loa** là một thiết bị điện, có khả năng biến đổi
**Truyền động điện** (cũng có tên là **điều khiển động cơ điện**), là một nhánh trong nhóm chuyên môn về điện tử công suất và điều khiển tự động. Có 2 cách định nghĩa truyền
nhỏ|Các kỹ sư điện thiết kế các hệ thống điện phức tạp... upright|Vi mạch điện tử, với công nghệ mới chỉ còn 1 nano mét cho một cổng logic **Kỹ thuật điện** là một lĩnh
**Đèn nhân quang điện**, viết tắt theo tiếng Anh là **PMT** (_Photomultiplier tube_) là một loại _linh kiện điện tử_ thuộc lớp _Đèn điện tử chân không_ nhóm _đèn photo_, thực hiện cảm biến photon
Chuỗi vận chuyển điện tử trong [[ti thể tại vị trí của sự phosphorylate hóa mang tính oxy hóa trong tế bào của sinh vật nhân chuẩn. NADH và đường succinate, sản phẩm của chu
thumb|Đo TDEM bằng trực thăng **Thăm dò điện từ miền thời gian** (tiếng Anh: _Time-Domain Electromagnetics_, viết tắt là TDEM; hoặc _Transient Electromagnetics_, viết tắt là TEM) là một phương pháp của Địa vật lý
**Nhiễu xạ điện tử tán xạ ngược** (**EBSD**) là một kỹ thuật sử dụng máy quét điện tử (SEM) để nghiên cứu cấu trúc tinh thể của các vật liệu. EBSD được thực hiện trên
Sơ đồ nguyên lý thiết bị EBL **Electron beam lithography** (EBL) là thuật ngữ tiếng Anh của công nghệ tạo các chi tiết trên bề mặt (các phiến Si...) có kích thước và hình dạng
thumb|Hộp viễn khiến của ti vi hãng [[Metz (công ty)|Metz]] **Điều khiển từ xa** tức **viễn cách điều khiển, viễn cự điều khiển** hay còn gọi là **viễn khiến** là thành phần của một thiết
thumb|Hai kiểu đèn quang điện **Đèn quang điện** hay **Phototube**, đôi khi còn gọi là **tế bào quang điện**, là loại _linh kiện điện tử_ thực hiện cảm biến photon (ánh sáng) thành dòng điện.
thumb |Một VCO [[sóng cực ngắn 12–18 GHz chế sẵn]] thumb|Một VCO âm tần đơn giản nhất Mạch **Dao động điều khiển bằng điện áp**, thường viết tắt theo tiếng Anh là **VCO** (_Voltage-controlled oscillator_)
**Transistor lưỡng cực nối**, viết tắt theo tiếng Anh là **BJT** (_Bipolar junction transistor_) là loại linh kiện bán dẫn có cấu trúc 2 tiếp xúc của 3 khối chất bán dẫn có đặc tính
**Transistor** là một loại _linh kiện bán dẫn chủ động_, thường được sử dụng như một phần tử khuếch đại hoặc một khóa điện tử. Transistor nằm trong đơn vị cơ bản tạo thành một
nhỏ|Từ DNA ở một sợi tóc, có thể khuyếch đại lên một lượng DNA vô cùng nhiều đủ để nghiên cứu. **Phản ứng chuỗi Polymerase** (Tiếng Anh: _polymerase chain reaction_, viết tắt: _PCR_) là một
Trong tính toán lượng tử, **thuật toán lượng tử** là một thuật toán chạy bằng mô hình thực tế của tính toán lượng tử, mô hình được sử dụng phổ biến nhất là mô hình
thumb|Đồng hồ đeo tay thạch anh **Dao động tinh thể** là mạch dao động điện tử sử dụng cộng hưởng cơ học của tinh thể dao động của vật liệu áp điện để tạo ra