✨Bài toán thứ mười bảy của Hilbert

Bài toán thứ mười bảy của Hilbert

Bài toán thứ mười bảy của Hilbert là một trong 23 bài toán của Hilbert trong danh sách nổi tiếng của David Hilbert xuất bản năm 1900. Nó xem xét việc biểu diễn các hàm hữu tỉ xác định không âm dưới dạng thương của hai tổng của các bình phương. Câu hỏi ban đầu của Hilbert là như sau:

Cho một đa thức nhiều biến luôn nhận giá trị không âm trên trường số thực, liệu nó có thể được biểu diễn dưới dạng tổng các bình phương của các hàm hữu tỉ?

Lời giải khẳng định đã được chứng minh năm 1927 bởi Emil Artin.

Sau đó Charles Delzell đã tìm ra một thuật toán cho bài toán này.

Một tổng quát hóa lên trường hợp ma trận (mọi ma trận với các phần tử là các hàm hữu tỉ sao cho ma trận luôn xác định không âm đều có thể biểu diễn được dưới dạng tổng của các bình phương đối xứng) được chứng minh bởi Gondard, Ribenboim và Procesi, Schacher . Nó cũng có một chứng minh sử dụng kiến thức cơ sở bởi Hillar và Nie .

Việc xây dựng câu hỏi đã xét đến các đa thức, chẳng hạn như

:f(x,y,z)=z^6+x^4y^2+x^2y^4-3x^2y^2z^2

luôn nhận giá trị không âm khi các biến nhận giá trị thực bất kì nhưng không thể được viết dưới dạng tổng các bình phương của các đa thức.

Người ta đã tìm ra điều kiện đủ để đa thức f có thể biểu diễn được dưới dạng tổng các bình phương của các đa thức. Ngoài ra, mọi đa thức f thực không âm đều có thể được xấp xỉ với độ chính xác tùy ý (theo chuẩn l1 của vectơ hệ số) bằng một dãy các đa thức {f\epsilon} biểu diễn được dưới dạng tổng các bình phương

Một bài toán mở là giá trị nhỏ nhất của

:v(n,d),

sao cho mọi đa thức không âm bậc d gồm n biến luôn có thể biểu diễn được dưới dạng tổng của v(n,d) bình phương của các hàm hữu tỉ thực.

Kết quả tốt nhất là

:v(n,d)\leq2^n

👁️ 0 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Bài toán thứ mười bảy của Hilbert** là một trong 23 bài toán của Hilbert trong danh sách nổi tiếng của David Hilbert xuất bản năm 1900. Nó xem xét việc biểu diễn các hàm
**Các bài toán của Hilbert** là một danh sách gồm 23 vấn đề (bài toán) trong toán học được nhà toán học Đức David Hilbert đưa ra tại Hội nghị toán học quốc tế tại
**Các bài toán thiên niên kỷ** (tiếng Anh: _Millennium Prize Problems_) là bảy bài toán nổi tiếng và phức tạp được lựa chọn bởi Viện Toán học Clay vào ngày 24 tháng 5 năm 2000,
**David Hilbert** (23 tháng 1 năm 1862, Wehlau, Đông Phổ – 14 tháng 2 năm 1943, Göttingen, Đức) là một nhà toán học người Đức, được công nhận như là một trong những nhà toán
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
phải|nhỏ|[[Lưu đồ thuật toán (thuật toán Euclid) để tính ước số chung lớn nhất (ưcln) của hai số _a_ và _b_ ở các vị trí có tên A và B. Thuật toán tiến hành bằng
**John von Neumann** (**Neumann János**; 28 tháng 12 năm 1903 – 8 tháng 2 năm 1957) là một nhà toán học người Mỹ gốc Hungary và là một nhà bác học thông thạo nhiều lĩnh
**Georg Ferdinand Ludwig Philipp Cantor** (;  – 6 tháng 1 năm 1918) là một nhà toán học người Đức, được biết đến nhiều nhất với tư cách cha đẻ của lý thuyết tập hợp, một
right|thumb|Kí hiệu tập hợp **số thực** (ℝ) Trong toán học, một **số thực** là một giá trị của một đại lượng liên tục có thể biểu thị một khoảng cách dọc theo một đường thẳng
**Đại số** là một nhánh của toán học nghiên cứu những hệ thống trừu tượng nhất định gọi là cấu trúc đại số và sự biến đổi biểu thức trong các hệ thống này. Đây
**Niels Henrik David Bohr** (; 7 tháng 10 năm 1885 – 18 tháng 11 năm 1962) là nhà vật lý học người Đan Mạch với những đóng góp nền tảng về lý thuyết cấu trúc
**Josiah Willard Gibbs** (11 tháng 2 năm 1839 - 28 tháng 4 năm 1903) là một nhà khoa học người Mỹ đã có những đóng góp lý thuyết đáng kể cho vật lý, hóa học
## Sự hình thành thuyết tương đối tổng quát ### Những khảo sát ban đầu Albert Einstein sau này nói rằng, lý do cho sự phát triển thuyết tương đối tổng quát là do sự
nhỏ|[[Giuseppe Peano]] Trong logic toán học, các **tiên đề Peano**, còn được gọi là các **tiên đề Peano –** **Dedekind** hay các **định đề Peano**, là các tiên đề cho các số tự nhiên được
**Nghịch lý Einstein–Podolsky–Rosen** hay **nghịch lý EPR** năm 1935 là một thí nghiệm lớn trong cơ học lượng tử của Albert Einstein và các đồng nghiệp của ông - Boris Podolsky và Nathan Rosen. Năm
right|thumb|350x350px|Hình 1(a): Biểu đồ Bode cho một [[bộ lọc thông cao bậc một (một cực); xấp xỉ tuyến tính được dán nhãn "Bode pole" (cực Bode); pha thay đổi từ 90° ở tần số thấp